Skip to main content

Risikoparameter

  • Chapter
  • First Online:
Katalog der Risiken
  • 2595 Accesses

Zusammenfassung

Nach der Benennung der Risiken im vorigen Kapitel und der Einführung von Intensitätsparametern für verschiedene Gefährdungen, Technologien und Expositionen, sollen in diesem Kapitel die zur Beschreibung dieser Gefährdungen geeigneten Risikoparameter systematisch aufgearbeitet und erläutert werden. Prinzipiell können solche Risikoparameter hochspezifisch oder sehr allgemein formuliert sein. Tab. 3.1 listet z. B. die Risikodefinitionen für Hangrutschungen beginnend mit sehr allgemeinen Definitionen (oben) zu immer fachspezifischen Definitionen (unten) auf. Zwar werden im Abschnitt „Einfache Risikoparameter“ auch einige fachspezifische Risikoparameter erwähnt, aber dieses Kapitel fokussiert überwiegend auf sehr allgemeinen Risikoparametern, also Parametern, die für viele bzw. alle Fachgebiete, die in Kap. 2 genannt wurden, verwendet werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Acemoglu D, Johnson S (2006) Disease and development: The effect of life expectancy on economic growth. National Bureau of Economic Research, NBER Working Paper No. 12269, Cambridge

    Google Scholar 

  • Adams J (1995) Risk. University College London Press

    Google Scholar 

  • AEMC (2010) National Emergency Risk Assessment Guidelines, Melbourne

    Google Scholar 

  • AICE (2009) Guidelines for developing quantitative safety risk criteria. Center for Chemical Process Safety, American Institute of Chemical Engineers, Inc.

    Google Scholar 

  • Akesson B (2008) Understanding bridge collapses. CRC Press, Taylor and Francis, London

    Google Scholar 

  • Alderson M (1983) An introduction to epidemiology, 2. Aufl. The MacMillian Press Ltd, Hampshire

    Book  Google Scholar 

  • Alderson M (1988) Mortality, morbidity and health statistics. Palgrave, London

    Google Scholar 

  • Ale B, Burnap P, Slater D (2015) On the origin of PCDS – (Probability consequence diagrams). Safety Sci 72:229–239

    Google Scholar 

  • Allen DE (1991) Criteria for design safety factors and quality assurance expenditure, Structural Safety and Reliability, Moan, T. & Shinozuka, M. Elsevier, Amsterdam, S 667–678

    Google Scholar 

  • Andersen PK, Canudas-Romo V, Keiding N (2013) Cause-specific measures of life years lost. Demogr 29(Article 41):1127–1152

    Google Scholar 

  • Argote L (1999) Organizational learning. Klever, Norwell

    Google Scholar 

  • Arrow KJ, Cropper ML, Eads GC, Hahn RW, Lave LB, Noll RG, Portney PR, Russel M, Schmalensee R, Smith VK, Stavins RN (1996) Is there a role for benefit-cost analysis in environmental, health, and safety regulation? Science 272(5259):221–222

    Google Scholar 

  • Asquith R (1949): Edwards v. National Coal Board, All England Law Reports, Vol. 1, S 747

    Google Scholar 

  • Aven T, Vinnem JE, Vollen F (2005) Perspectives on risk acceptance criteria and management for installations – application to a development project, Kolowrocki (ed.) Advances in safety and reliability. Taylor & Francis Group, S 107–114

    Google Scholar 

  • Azomahou TT, Boucekkine R, Diene B (2008) A closer look at the relationship between life exptectancy and economic growth. United Nations University, Maastricht Economic and Social Research and Training Centre on Innovations and Technology, Maastricht

    Google Scholar 

  • BABS (2003) KATARISK – Katastrophen und Notlagen in der Schweiz, eine Risikobeurteilung aus der Sicht des Bevölkerungsschutzes. Bundesamt für Bevölkerungsschutz, Bern

    Google Scholar 

  • BABS (2013) Glossar der Risikobegriffe, Bern, 29.4.2013

    Google Scholar 

  • BABS (2015) Katastrophen und Notlagen Schweiz, Technischer Risikobericht 2015. Bundesamt für Bevölkerungsschutz, Bern

    Google Scholar 

  • Baecher GB, Abedinisohi F, Patev RC (2015) Societal risk criteria for loss of life, concepts, history, and mathematics. FN-report draft. University of Maryland, March 7, 2015

    Google Scholar 

  • Baecher G and Christian J (2003), Reliability and statistics in geotechnical engineering. John Wileys &Sons

    Google Scholar 

  • Baecher GB, Abedinisohi F, Patev RC (2015) Societal risk criteria for loss of life, concepts, history, and mathematics, 7. March 2015, FN-Report Draft, University of Maryland

    Google Scholar 

  • BAFU (2012) EconoMeRailway: Risikoanalysen Naturgefahren entlang von Bahnstecken, Methodik, Version 1.0, 25. Juni 2012

    Google Scholar 

  • BAFU (2018) EconoMe: Entwicklung eines Modells zur Bestimmung von indirekten Kosten in Folge Naturgefahren und Integration in EconoMe (iCost), Arge iCost, Version 1.0, 25, Oktober 2018, Bundesamt für Umwelt

    Google Scholar 

  • Ball DJ, Floyd PJ (2001) Societal risks. Final report. School of health, biological/Environmental sciences. Middlesex University, London

    Google Scholar 

  • Bardehle D, Annuß R (2016) In: K Hurrelmann, O. Razum (Hrsg.) Gesundheitsberichterstattung, Handbuch Gesundheitswissenschaften, 6., durchgesehene Aufl. Beltz Juventa, Hemsbach, S 403–440

    Google Scholar 

  • Baten J, Wagner A (2002) Autarchy, Market Desintegration, and Health: The Mortality and Nutritional Crisis in Naz Germany, 1933–1937, CESIFO Working Paper No. 800, Category 7: Trade Policy, October 2002, https://www.cesifo-group.de/DocDL/cesifo_wp800.pdf

  • Bazzurro P, Cornell CA, Menun C, Motahari M, Luco N (2006) Advanced seismic assessment guidelines, PEER Report 2006/05, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, September 2006

    Google Scholar 

  • Bea RG (1998) Oceanographic and reliability characteristics of a platform in the Mississippi River Delta. J Geotech Geoenviron Eng, ASCE 124(8):779–786

    Google Scholar 

  • Beard A, Cope D (2007) Assessment of the safety of tunnels study, for the European Parliament. Science and Technology Options Assessment (STOA), Brussels

    Google Scholar 

  • Becker, G.S.; Philipson, T.J.; Soares, R.R. (2005) The Quantity and Quality of Life and the Evolution of World Inequality, American Ecnomic Review, Vol. 95, No. 1, March 2005, S. 277–291

    Google Scholar 

  • Bender R, Lange S (2001) Die Vierfeldertafel, Dtsch. Med. Wschr, 2001, Seite Georg Thieme Verlag, T36–T38

    Google Scholar 

  • Berchtold F (2019) Metamodel for complex scenarios in fire risk analysis of road tunnels, Dissertation. Bergische Universität Wuppertal, Fakultät für Architektur und Bauingenieurwesen, Wuppertal

    Google Scholar 

  • Bernoulli, D. (1766). Essai d’une nouvelle analyse de la mortalité, causée par la petite vérole, et des avantages de l’inoculation pour le prévenir. Histoire avec les Mémoires. Académie Royal des Sciences, Paris 1760, S 1–45

    Google Scholar 

  • Bestattungen.de (2012) Monatliches Sterberisiko in Deutschland, 10. Januar 2012, https://www.bestattungen.de/wissenswertes/studien/studie-monatliches-sterberisiko-in-deutschland.html

  • Bichel W (1949) Early Swiss Mortality Tables, http://www.sjes.ch/papers/1949-IV-9.pdf

  • Bohnenblust H (1998) Risk-based decision making in the transportation sector; In: Jorissen, R.E., Stallen, P.J.M. (eds.), Quantified societal risk and policy making. Kluwer academic publishers

    Google Scholar 

  • Boutellie R, Heinzen M (2014) Growth through innovation: managing the technology-driven enterprise. Springer, Cham

    Book  Google Scholar 

  • Brady S (2013) The 30 year failure cycle, The Structural Engineer, S 14–15

    Google Scholar 

  • Bratzke J, Parzeller M & Köster F (2004) Deutsches Forensisches Sektionsregister startet. Deutsches Ärzteblatt, Jahrgang 101, Heft 18, 30. S A1258–A1260

    Google Scholar 

  • Bringmann G, Stich A & Holzgrabe U (2005) Infektionserreger bedrohen arme und reiche Länder – Sonderforschungsbereich 630: Erkennung, Gewinnung und funktionale Analyse von Wirkstoffen gegen Infektionskrankheiten”, BLICK, Forschungsschwerpunkt, S 22–25

    Google Scholar 

  • Bründl M (2009.) PLANAT Risikokonzept für Naturgefahren – Leitfaden. Nationale Plattform für Naturgefahren, Bern, S 420

    Google Scholar 

  • Buchheim C (2001) Die Wirtschaftsentwicklung im Dritten Reich – Mehr Desaster als Wunder, Vierteljahresheft für Zeitgeschichte, München – Berlin, 49, Heft 4, S 653–664

    Google Scholar 

  • Bundesamt für Arzneimittel (2021) Von der ILCD zur ICD-10, https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-who/historie/ilcd-bis-icd-10/

  • Burgherr P, Hirschberg S (2014) Comparative risk assessment of severe accidents in the energy sector. Energy Policy 74:S45–S56

    Article  Google Scholar 

  • Burgherr P, Spada M, Kalinina A, Vandepaer L, Lustenberger P, Kim W (2019) Comparitive Risk Assessment of Accidents in the Energy Sector within Different Long-Term Scenarios and Marginal Electricity Supply Mixes, Proceedings of the 29th European Safety and Reliability Conference, Eds. Michael Beer and Enrico Zio, Published by Research Publishing, Singapore, S 1525–1532

    Google Scholar 

  • Burgmann M (2005) Risks and decisions for conservation and environmental management. Ecology, biodiversity and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Bush JW, Fanshel S, Chen M (1972) Analysis of a tuberculin testing program using a health status index. Soc Econ Plann Sci 6(1):49–69

    Google Scholar 

  • BUWAL (1999a) Risikoanalyse bei gravitativen Naturgefahren – Methode, Umwelt-Materialien Nr. 107/I. Naturgefahren, Bern

    Google Scholar 

  • BUWAL (1999b) Risikoanalyse bei gravitativen Naturgefahren – Fallbeispiele und Daten, Umwelt-Materialien Nr. 107/I, Naturgefahren, Bern

    Google Scholar 

  • BUWAL (1999) Risikoanalyse bei gravitativen Naturgefahren, Methode, Bundesamt für Umwelt, Wald und Landschaft, Bern

    Google Scholar 

  • BUWAL, BRP & BWW (1997): Berücksichtigung der Hochwassergefahren bei raumwirksamen Tätigkeiten, Bundesamt für Wasserwirtschaft (BWW), Bundesamt für Raumplanung (BRP) & Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Biel, Schweiz

    Google Scholar 

  • BZS (1995) Bundesamt für Zivilschutz. KATANOS – Katastrophen und Notlagen in der Schweiz, eine vergleichende Übersicht, Bern

    Google Scholar 

  • Cabinet Office (2015) National risk register of civil emergencies, 2015 edition, London

    Google Scholar 

  • Camilleri D (2001) Malta’s Risk Minimization to Earthquake, Volcanic & Tsunami Damage, Safety, Risk, Reliability – Trends in Engineering, Malta 2001

    Google Scholar 

  • CDC (2021): Lesson 3: Measures of risk, section 3: Mortality frequency measures, principles of epidemiology in public health practice, Third Edition, An Introduction to Applied Epidemiology and Biostatistics, https://www.cdc.gov/csels/dsepd/ss1978/lesson3/section3.html

  • CIRIA (1977) Rationalisation of safety and serviceability factors in structural codes, Report No. 63. Construction Industry Research and Information Association, London

    Google Scholar 

  • Cohen BL & Lee L (1979) Catalog of risk. Health Phys 36:707–722

    Google Scholar 

  • Cohen BL (1991) Catalog of risks extended and updated. Health Phys 61:317–335

    Google Scholar 

  • Corotis RB (2003) Socially relevant structural safety, Applications of Statistics and Probability in Civil Engineering, Der Kiureghian, Madanat & Pestana (eds). Millpress, Rotterdam, S 15–24

    Google Scholar 

  • Covello VT (1991) Risk comparisons and risk communications: Issues and problems in comparing health and environmental risks. Kasperson, R.E. (Edr): Communicating Risk to the Public. Kluwer Academic Publishers, S 79–124

    Google Scholar 

  • Cox AW, Lees FP & Ang ML (1990) Classification of hazardous locations. Institution of Chemical Engineers, Rugby

    Google Scholar 

  • Cox Jr, AL (2008) What's wrong with risk matrices? Risk Analysis 28(Heft 2):497–512

    Google Scholar 

  • Crowl DA, Louvar JF (2020) Chemical process safety: fundamentals with applications, 4th Edition. Pearson

    Google Scholar 

  • d Albis H, Bonnet F (2018) Inequalities in life expectancy and the global welfare convergence. Econ Lett 168:49–51

    Google Scholar 

  • D’Alembert J (1761). Sur l’application du calcul des probabilities à l’inoculation de la petite vérole. In: d’Alembert, J. (ed.). Opuscules Mathematiques, S 2. 26

    Google Scholar 

  • Dai FC, Lee CF & Ngai YY (2002) Landslide risk assessement and management: an overview. Eng Geol 64:64–87

    Google Scholar 

  • De Bruijn KM, Beckers J, Van der Most H (2010) Casualty risks in the discussion on new flood protection standards in The Netherlands, in: Flood Recovery, Innovation and Response II, edited by: De Wrachien D, Proverbs D, Brebbia CA, Mambretti S, WIT Press, S 73–83

    Google Scholar 

  • De Bruijn K, Beckers J, van der Most H (2010) Casualty risks in the discussion on new flood protection standards in The Netherlands, Flood recovery, innovation and response II, WIT. Trans Ecol Environ 133: 73–83

    Google Scholar 

  • De Sanctis G (2015) Generic risk assessment for fire safety: performance evaluation and optimisation of design provisions performance evaluation and optimisation of design provisions, Doctorial Thesis, IBK Bericht, vol. 363, Zürich: Institut für Baustatik und Konstruktion der ETH Zürich, 2015, file:///C:/Users/User/Downloads/eth-48609–01.pdf

    Google Scholar 

  • Dekking FM, Kraaikamp C, Lopuhaä HP, Meester LE (2005) A modern introduction to probability and statistics – understanding why and how. Springer, London

    Book  Google Scholar 

  • Destatis (2019) Bevölkerungsfortschreibung auf Grundlage des Zensus 2011, 24. Mai 2019, Statistisches Bundesamt Wiesbaden

    Google Scholar 

  • Destatis (2021) Erste vorläufige Ergebnisse der Todesursachenstatistik für 2020 mit Daten zu COVID-19 und Suiziden, https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/_inhalt.html

  • DHS (2011) Strategic national risk assessment the strategic national risk assessment in support of PPD 8: A comprehensive risk-based approach toward a secure and resilient nation, Washington

    Google Scholar 

  • Diamantidis D (2008) Risk acceptance criteria, background documents on risk assessment in engineering, Document Nr. 3. JCSS Joint Committee of Structural Safety, Regensburg

    Google Scholar 

  • Diamantids D, Zuccarelli F, Westhäuser A (2000) Safety of long railway tunnels. Reliability Eng System Safety 67:135–145

    Google Scholar 

  • DIN 1055–100 (1999) Einwirkungen auf Tragwerke, Teil 100: Grundlagen der Tragwerksplanung, Sicherheitskonzept und Bemessungsregeln, Juli 1999

    Google Scholar 

  • DoC (1910) Bulletin of the Bureau of Labor, Volume XXI-1910, Department of Commerce and Labor, Washington, Government Printing Office

    Google Scholar 

  • DoT (1990) Guide Specification and Commentary for Vessel Collision Design of Highway Bridges, Department of Transportation, Federal Highway Administration: Vol I: Final Report, Publication Nr. FHWA-RD-91–006, 1990

    Google Scholar 

  • Drewes J (2009) Verkehrssicherheit im systemischen Kontext, Dissertation, Fakultät Maschinenbau, Technische Universität Carolo-Wilhelmina zu Braunschweig

    Google Scholar 

  • DUAP (1997) – Department of Urban Affairs and Planning: Risk criteria for land use safety planning. Hazardous Industry Planning Advisory, Paper No. 4, Sydney

    Google Scholar 

  • Duffey RB, Saull JW (2012) Know the risk: learning from errors and accidents: safety and risk in today's technology. Butterworth-Heinemann, January 19, 2012

    Google Scholar 

  • Dukim NJ (2009) Acceptance criteria in Denmark and the EU. Danmarks Tekniske Universitet, Institut for Planlaegning

    Google Scholar 

  • Düsgün HSB, Lacasse S (2005) Vulnerability and acceptable risk in integrated risk assessment framework, In: Proceedings of the International Conference on Land-slide Risk Management, Vancouver B.C., Canada, 31 May–3 June 2005. Taylor and Francis, London, S 505–515

    Google Scholar 

  • Düzgün HSB, Lacasse S (2005) Vulnerability and Acceptable Risk in Integrated Risk Assessment Framework. In: J Kanda, T Takada, HF Furata (Hrsg.) Proc. of International Conference on Landslide Risk Management and 18th Vancouver Geotechnical Society Symposium, May 31 – June 4, CRC Press, Vancouver, Canada, S 189–198

    Google Scholar 

  • E DIN 1055–9: Einwirkungen auf Tragwerke Teil 9: Außergewöhnliche Einwirkungen. März 2000

    Google Scholar 

  • Easterlin, R.A. (2000) The worldwide standard of living since 1800. J Econ Perspectiv 14(1):7–26

    Google Scholar 

  • EconoMe (2019) EconoMe 5.0 Anwendertagung, ETH Zürich, 21.8.2019. https://econome.ch/eco_work/eco_wiki_main.php?wiki_link=87

  • Einstein HH (1988) Special lecture, landslide risk assessment. Proc. 5th Int. Symp. On Landslides, Lausanne, Switzerland, 2, S 1075–1090

    Google Scholar 

  • Elms DG (1999) Achieving structural safety: theoretical considerations. Struct Safety 21:311–333

    Google Scholar 

  • Ellingwood BR (1999) Probability-based structural design: Prospects for acceptable risk bases. Application of Statistics and Probability (ICASP 8), Sydney, Band 1, S 11–18

    Google Scholar 

  • EMPD (2012) All hazards risk assessment methodology guidelines 2011–2012. Emergency Management Planning Division, Ottawa, Canada

    Google Scholar 

  • ENV 1991 –1 Eurocode 1: Basis of Design and Action on Structures, Part 1: Basis of Design. CEN/CS, August 1994

    Google Scholar 

  • EPRI (1994): Methodology for developing seismic fragilities, prepared by J. R. Benjamin and Associates, Inc and RPK Structural Me-chanics Consulting, TR-103959, Project 2722–23, June 1994

    Google Scholar 

  • Eskensen S, Tengborg P, Kampman J, Veicherts T.H, (2004), Guidelines for tunnelling risk management International Tunnelling Association, Working group No. Tunnelling and Underground Space Technology 19, S 217–237

    Google Scholar 

  • EuroMOMO (2021) European mortality monitoring, https://www.euromomo.eu/

  • European Commission (1995) ExternE – Externalities of energy, Vol. 1–5, Brussels

    Google Scholar 

  • European Commission (2007) ExternE – Externalities of enery. http://www.externe.info/

  • European Commission (2010) Risk assessment and mapping guidelines for disaster management. Working Paper, Brussels

    Google Scholar 

  • Evans AW, Verlander NQ (2006) What is wrong with criterion FN-lines for judging the tolerability of risk. Risk Analysis 17(2):157–168

    Google Scholar 

  • Faber MH, Sorensen JD, Vrouwenvelder TACWM (2015) On the Regulation of Life Safety Risk, 2th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 Vancouver, Canada, July 12–15, 2015, S 1–9 (Bild Norm

    Google Scholar 

  • Fanshel S, Bush JW (1970) A health-status index and its application to health-services outcomes. Oper Res INFORMS 18(6):1021–1066

    Google Scholar 

  • Farmer FR (1967) Siting criteria: a new approach. Nucl Saf 8:539–548

    Google Scholar 

  • FAZ (2008) Wie die Bevölkerung über Nacht schrumpfte, Jetzt offiziell: 1,3 Millionen weniger in Deutschland. Frankfurter Allgemeine Zeitung 22(7):2008

    Google Scholar 

  • Felder S (2020) Was ist ein Menschenleben wert? Basler Zeitung, 6. April 2020, S 15

    Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Canadian Geotech J 31:261–272

    Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005a) State of the Art Paper 1: A framework for landslide risk assessment and management, In: Proceedings of the International Conference on Landslide Risk Management, Vancouver B.C., Canada, 31 May-3 June 2005a, Taylor and Francis, London, S 3–25

    Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005b) State of the Art Paper 1: A framework for landslide risk assessment and management, January 2005b, Conference: proceedings, international conference on landslide risk management, May 31–Jun 3, 2005b, Vancouver, S 3–26

    Google Scholar 

  • Femers S & Jungermann H (1991) Risikoindikatoren. Eine Systematisierung und Diskussion von Risikomassnahmen und Risikovergleichen. In: Forschungszentrum Jülich; Programmgruppe Mensch, Umwelt, Technik (Hrsg.): Arbeiten zur Risiko-Kommunikation, Heft 21, Jülich 1991

    Google Scholar 

  • Fischer K, Bürge M, Michel C (2018) Personenrisiken aus Brand Recherche für die Spurgruppe BSV 2025 der VKF, Schlussbericht, 19. September 2018, Version 1.1

    Google Scholar 

  • Fisher HS, Darnay A (1998) Statistical record of health & medicine, 2nd Edition. Detroit

    Google Scholar 

  • Flaxman S et al (2020) Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. A Nature Research Journal. 8. Juni 2020. Verfügbar unter: https://doi.org/10.1038/s41586-020-2405-7

  • Foreman, KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, Pletcher MA, Smith AE, Tang K, Yuan C-W, Brown JC, Friedman J, He J, Heuton KR, Holmberg M, Patel DJ, Reidy P, Carter A, Cercy K, Chapin A, Douwes-Schultz D, Frank T, Goettsch F, Liu PY, Nandakumar V, Reitsma MB, Reuter V, Sadat N, Sorensen RJD, Srnivasan V, Updike RL, York H, Lopez AD, Lozano R, Lim SS, Mokdad AH, Vollset SE, Murray CJL (2018) Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392(10159):2052–2090

    Google Scholar 

  • Franz G; Hampe E; Schäfer K (1991) Konstruktionslehre des Stahlbetons. Band II: Tragwerke, Zweite Auflage. Springer Verlag, Berlin

    Google Scholar 

  • Freudenthal AM (1947) Safety of structures. Trans ASCE 112:125–180

    Google Scholar 

  • Fuchs S. (2006) Probabilities and uncertainties in natural hazard risk assessment. In: D Proske, M Mehdianpour & L Gucma (Eds), Proceedings of the 4th International Probabilistic Symposium, Berlin, S 189–204

    Google Scholar 

  • G20/OECD (2012) Disaster Risk Assessment and Risk Financing. A G20/OECD Methodological framework, Paris

    Google Scholar 

  • Ganz G (2018) Risikoanalysen im internationalen Vergleich,» Bergische Universität Wuppertal. Bergische Universität Wuppertal Abteilung D - Maschinenbau / Werkstofftechnik, Wuppertal

    Google Scholar 

  • Ganz C (2018) Risikoanalysen im internationalen Vergleich, Bergische Universität Wuppertal, Dissertation

    Google Scholar 

  • Garrick BJ (2000) Invited expert presentation: Technical area: nuclear power plants. Proceedings – Part 2/2 of promotion of technical harmonization on risk-based decision-making, Workshop, May 2000, Stresa, Italy

    Google Scholar 

  • Garrick BJ et al. (1987) Space shuttle probabalistic risk assessment, proof-of-concept study, auxiliary power unit and hydraulic power unit analysis report. Prepared for the National Aeronautics and Space Administration. Washington, D.C

    Google Scholar 

  • GEO (2002) QRA of collapses and excessive displacement of deep excavations, Geotechnical Engineering Office, GEO Report 124, Hong Kong, February 2002

    Google Scholar 

  • GFSO (2007) - German Federal Statistical Office. http://www.destatis.de

    Google Scholar 

  • Gmünder FK, Schiess M & Meyer P (2000) Risk Based Decision Making in the Control of Major Chemical Hazards in Switzerland – Liquefied Petroleum, Ammonia and Chloride as Examples. Proceedings – Part 2/2 of Promotion of Technical Harmonization on Risk-Based Decision-Making, Workshop, May, 2000, Stresa, Italy

    Google Scholar 

  • GRG (2018) Ages of oldes Living Man and Loldes Living Woman in the world since 1955, Gerontology Research Group, http://www.grg.org/SC/SCindex.html

  • GruSiBau (1981) Normenausschuß Bauwesen im DIN: Grundlagen zur Festlegung von Sicherheitsanforderungen für bauliche Anlagen. Ausgabe 1981, Beuth Verlag

    Google Scholar 

  • Haagsma JA, Graetz N, Bolliger I. et al. (2016) The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Injury Prevent 22:3–18

    Google Scholar 

  • Haastrup P, Brockhoff L (1991) Reliability of accident case histories concerning hazardous chemicals. An analysis of uncertainty and quality aspects. J Hazard Mater 27:339–350

    Article  Google Scholar 

  • Halperin K (1993) A comparative Analysis of Six methods for Calculating Travel Fatality Risk, RISK´- Issues in Health & Safety 15, January 1993, S 15-33

    Google Scholar 

  • Hambly EC & Hambly EA (1994) Risk evaluation and realism, Proc ICE Civil Engineering, Vol. 102, S 64–71

    Google Scholar 

  • Hanse CW, Lonstrup L (2015) The rise in life expectancy and economic growth in the 20th century. Econ J 125(584):838–852

    Google Scholar 

  • Hansen W (1999) Kernreaktorpraktikum. Vorlesungsmitschriften. Institut für Energietech¬nik, Technische Universität Dresden, 1999

    Google Scholar 

  • Haugen S, Myrheim H, Bayly DR & Vinneman JE (2005) Occupational risk in decommisining/removal projects. In: Kolowrocki (ed.), Advances in Safety and Reliability. Taylor & Francis Group, S 807–814

    Google Scholar 

  • Hauptmanns U, Herttrich M, Werner W (1991) Technische Risiken. Springer-Verlag, Berlin

    Google Scholar 

  • Henke V (1979) Ein Beitrag zur Zuverlässigkeit frei gelagerter Stahlbetonstützen unter genormter Brandeinwirkung. Dissertation, Technische Universität Braunschweig

    Google Scholar 

  • Hennings W, Mertens J (1998) Methodik der Risikoanalyse für Kernkraftwerke, Ein Leitfaden für die regionale Sicherheitsplanung, vdf, Hochschulverlag an der ETH Zürich

    Google Scholar 

  • Hersi M (2009) Analysis of bridge failure in United States (2000–2008). M.Sc. Thesis, The Ohio State University

    Google Scholar 

  • Ho JY, Hendi AS (2018) Recent trends in life expectancy across high income countries: retrospective observational study. BMJ 362:k2562

    Article  Google Scholar 

  • Hofmann, C., Proske, D., Zeck, K. (2021). Vergleich der Einsturzhäufigkeit und Versagenswahrscheinlichkeit von Stützbauwerken, Bautechnik, Heft 7

    Google Scholar 

  • Hofstetter P & Hammitt JK (2001) Human Health Metrics for Environmental Decision Support Tools: Lessons from Health Economics and Decision Analysis. National Risk Management Research Laboratory, Office of Research and Development, US EPA, Cincinnati, Ohio, September 2001. https://www.frontiersin.org/articles/10.3389/fphys.2017.00812/full?utm_source=G-BLO&utm_medium=WEXT&utm_campaign=ECO_FPHYS_20171212_human-limits

  • Hübl J, Fuchs S, Agner P (2007): Optimierung der Gefahrenzonenplanung: Weiterentwicklung der Methoden der Gefahrenzonenplanung; IAN Report 90; Institut für Alpine Naturgefahren, Universität für Bodenkultur Wien, Wien

    Google Scholar 

  • Hungerbühler K, Ranke J & Mettier T (1999) Chemische Produkte und Prozesse – Grundkonzept zum umweltorientierten Design. Springer Verlag, Berlin Heidelberg

    Google Scholar 

  • Idel KH (1986) Sicherheitsuntersuchungen auf probabilistischer Grundlage für Staudämme. Abschlußbericht, Anwendungsband. Untersuchungen für einen Referenzstaudamm. ed. by Deutsche Gesellschaft für Erd- und Grundbau im Auftrag des Bundesministers für Forschung und Technologie. Essen

    Google Scholar 

  • IMO (2000) – International Maritime Organisation: Formal Safety Assessment : Decision Parameters including Risk Acceptance Criteria, Maritime Safety Committee, 72nd Session, Agenda Item 16, MSC72/16, Submitted by Norway, 14. February 2000

    Google Scholar 

  • Inhaber H (2004) Risk analysis applied to energy systems. Encyclopedia of Energy, Elsevier

    Google Scholar 

  • Inhaber H (2016) Energy risk assessment. Routledge, Taylor & Francis, London New York

    Google Scholar 

  • James ML (1996) Acceptable Transport Safety. Research Paper 30, Department of the Parliamentary Library, http://www.aph.gov.au/library/pubs/rp/1995-96/96rp30.html

  • JCSS (1976) Joint Committee on Structural Safety (JCSS) CEB-FIB: First order reliability concepts for design codes. Bulletin d’ Information 112, London, München, July 1976

    Google Scholar 

  • JCSS (2011) JCSS Probabilistic Model Code, Joint Committee on Structural Safety, https://www.jcss-lc.org/jcss-probabilistic-model-code/

    Google Scholar 

  • JCSS (2020) Probabilistic Modelcode, https://www.jcss.byg.dtu.dk/Publications/Probabilistic_Model_Code,

  • Jonkman SN (2007) Loss of life estimation in flood risk assessment – Theory and applications. PhD thesis, Rijkswaterstaat – Delft Cluster, Delft

    Google Scholar 

  • Jonkman SN, Jongejan R, Maaskant B (2011a) The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy – Nationwide Estimates of Societal Risk and Policy Applications. Risk Analysis 31(2):282–300

    Google Scholar 

  • Jonkman SN, Jongejan R, Maaskant B (2011b) The use of individual and societal risk criteria within the Dutch flood safety policy – nationwide estimates of societal risk and policy applications. Risk Analysis 31(2):282–300

    Google Scholar 

  • Jonkman SN, van Gelder PHAJM, Vrijling JK (2003a) An overview of quantitative risk measures for loss of life and economic damage. J Hazardous Mater A 99:1–30

    Google Scholar 

  • Kafka P (1999) How safe is safe enough? – An unresolved issue for all technologies. In: Schuëller, Kafka (Eds) Balkema safety and reliability, Rotterdam, S 385–390

    Google Scholar 

  • Kaneko F, Arima T, Yoshida K, Yuzui T (2015) On a novel method for approximation of FN diagram and setting ALARP borders. J Mar Sci Technol 20:14–36

    Google Scholar 

  • Kaplan RM, Bush JW & Berry CC (1976) Health Status: Types of Validity and the Index of Well-being. Health Services Res 11(4):478–507

    Google Scholar 

  • Keiler M, Zischg A, Fuchs S, Hama AM, Stötter J (2005) Avalanche related damage potential – changes of persons and mobile values since the mid-twentieth century, case study Galtür. Nat Hazard 5(2005):49–58

    Article  Google Scholar 

  • Kleine-Gunk B (2007) Anti-Aging-Medizin – Hoffnung oder Humbug? Deutsches Ärzteblatt, Jg. 104, Heft 28-29, 16th Juli 2007, B1813-B1817

    Google Scholar 

  • Kelly KE (1991) The myth of 10–6 as a definition of acceptable risk. In Proceedings of the 84th Annual Meeting of the Air & Waste Management Association, Vancouver, B.C., Canada, June 1991

    Google Scholar 

  • Kennedy RP, Cornell CA, Campbell RD, Kaplan S, Perla HF (1980) Probabilistic seismic safety of an existing nuclear power plant. Nuclear Eng Design 59:315–338

    Google Scholar 

  • Kennedy RP, Ravindra MK (1984) Seismic fragilities for nuclear power plant risk studies. Nuclear Eng Design 79(Issue 1):47–68

    Google Scholar 

  • Kennedy, R.P. (1999): Overview of methods for seismic PRA and SMA Analysis including recent innovations. Proceedings of the OECD/NEA workshop on seismic risk, 10–12 August 1999, Tokyo, Japan

    Google Scholar 

  • Kharecha PA & Hansen JE (2013) Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 47(9):4889–4895

    Google Scholar 

  • Klarman H, Francis J, Rosenthal G (1968) Cost effectiveness analysis applied to the treatment of chronic renal disease. Med Care 6:48–54

    Google Scholar 

  • Kletz TA (1971) Hazard analysis: a quantitative approach to safety, major loss prevention in the process industries: proceeding of a symposium of the institution of chemical engineers held in newcastle upon tyne, Organized by the Northern Branch of the Institution, Vol 34, S 75–81

    Google Scholar 

  • Kreienbrock L, Pigeot I, Ahrens W (2012) Epidemiologische Methoden, Springer Spektrum, 5. Aufl., Heidelberg

    Google Scholar 

  • Kreuzer OP, Etheridge M, Guj P, McMahon M, Holden D (2008) Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Econ Geol 103:829–850

    Google Scholar 

  • Kröger W & Høj NP (2000) Risk analyses of transportation on road and rail-way. Proceedings – Part 2/2 of Promotion of Technical Harmonization on Risk-Based Decision-Making, Workshop, May 2000, Stresa, Italy

    Google Scholar 

  • Kuhlmann A (1981) Einführung in die Sicherheitswissenschaft, Vieweg und Sohn Verlagsgesellschaft mbH, Verlag TÜV Rheinland, Wiesbaden, Köln

    Google Scholar 

  • Lancet (2018) The global burden of disease study 2017. Vol 392, Number 10159, November 10 2018, S 1683–2138, e14–e18

    Google Scholar 

  • Langner G (1998) Estimation of infant mortality and life expectancy in the time of the Roman Empire: a methodological examination. Hist Soz Forsch. 23(1–2):299–326

    Google Scholar 

  • Larsen OD (1993) Ship collision with bridges, the interaction between vessel traffic and bridge structures. IABSE (International Association for Bridge and Structural Engineering), Zürich

    Google Scholar 

  • Lebensministerium (2011) Richtlinie für die Gefahrenzonenplanung, die.wildbach, BMLFUW-LE.3.3.3/0185-IV/5/2007, Fassung vom 04. Februar 2011

    Google Scholar 

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Tilford Publishing, London

    Book  Google Scholar 

  • Leipziger Volkszeitung (2008) Das Spiel mit der Lebenszeit, Freitag, 12 September 2008, S 8–9

    Google Scholar 

  • Lenk C (2002) Health and enhancement. In: Gimmler, Lenk, Aumüller (Eds) Health and quality of life, Ethik in der Praxis, Bd. 9, LIT-Verlag, Münster, Hamburg, London

    Google Scholar 

  • Levitis DA (2010) Before senescence: the evolutionary demography of ontogenesis. Proceedings of the Royal Society B, S 1–8

    Google Scholar 

  • Liener S, Gsteiger P, Schönthal E, Hauser M (2012) Quantifizierung der Naturgefahrenbasierten Risiken auf dem Netzwerk der Schweizerischen Bundesbahnen, 12th Congress INTERPRAEVENT 2012, Grenoble, Frankreich, Extended Abstracts, S 1001–1009

    Google Scholar 

  • Lohne HP, Ford EP, Majoumerd MM, Randeberg E, Aldaz S, Reinsch T, Wildenborg T, Brunner LG (2017) Barrier definitions and risk assessment tools for geothermal wells, Report IRIS – 2017/294

    Google Scholar 

  • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CL (2004) Global burden of disease and risk factors. World Health Organization

    Google Scholar 

  • Lu H, Wang M, Yang B, Rong X (2003) Study on the Application of the Kent Index Method on the Risk Assessment of Disatrous Accidents in Subway Engineering, The Scientific World Journal, Vol 2013, Article ID 360705, 10 Seiten, Hindawi Publishing Corporation

    Google Scholar 

  • LUW (2005) – Landesumweltamt Nordrhein-Westfalen. Beurteilungsmaßstäbe für krebserzeugende Verbindungen. http://www.lua.nrw.de/luft/immissionen

    Google Scholar 

  • Maag T (2004) Risikobasierte Beurteilung der Personensicherheit von Wohnbauten im Brandfall unter Verwendung von Bayes’schen Netzen, Institut für Baustatik, und Konstruktion, ETH Zürich, vdf Hochschulverlag AG an der ETH Zürich, IBK Bericht 282, März 2004 Zürich

    Google Scholar 

  • MacKillop E, Sheard S (2018) Quantifying life: understanding the history of quality-adjusted life-years (QALYs). Soc Sci Med 211:359–366

    Google Scholar 

  • Mannan S (2005) Lee´s Loss Prevention in the Process Industries, Hazard Identification, Assessment and Control, Vol 1, Third Edition, Elsevier Butterworth-Heinemann: Burlington

    Google Scholar 

  • Marck A, Antero J, Berthelo G, Sauliere G, Jancovici J-M, Masson-Delmotte V, Boeuf G, Spedding M, Le Bourg E, Toussaint J-F (2017a) Are we reaching the limits of homo sapiens? Front Physiol 2017:1–12

    Google Scholar 

  • Marck A, Antero J, Berthelot G, Sauliere G, Janovici J-M, Masson-Delmotte V, Boeuf G, Spedding J, Le Bourg E, Toussaint J-F (2017b) Are we reaching the limits of homo sapiens? Front Physiol 2017b(8):812. https://doi.org/10.3389/fphys.2017.00812

  • Markandya A & Wilkinson P (2007) Electricity generation and health. Lancet 370(9591):979–990

    Google Scholar 

  • Mathieu H, Saillard Y (1974) Sécurité des Structures Concepts générauxh charges et actions. CEB, Bulletin d’information 102, Paris

    Google Scholar 

  • Mayer M (1926) Die Sicherheit der Bauwerke und ihre Berechnung nach Grenzkräften anstatt nach zulässigen Spannungen. Verlag von Julius Springer, Berlin

    MATH  Google Scholar 

  • Mathiesen TC (1997) Cost Benefit Analysis of Existing Bulk Carriers. DNV Paper Series No. 97-P 008

    Google Scholar 

  • McBean EA, Rovers FA (1998) Statistical Procedures for Analysis of Environmental Monitoring Data & Risk Assessment. Prentice Hall PTR Environmental Management & Engineering Series, Volume 3, Prentice Hall, Inc., Upper Saddle River

    Google Scholar 

  • Melchers RE (1999) Structural reliability analysis and prediction. John Wiley

    Google Scholar 

  • Menzies JB (1996) Bridge failures, hazards and societal risk. International Symposium on the Safety of Bridges, London

    Google Scholar 

  • Modig K, Andersson T, Vaupel J, Rau R, Ahlborn A (2017) How long do centenarians survive? Life expectancy and maximum lifespan, J Intern Med 282(2):156–163

    Google Scholar 

  • MoI (2008) DNRA, Dutch National Risk Assessment, Ministry of the Interior and Kingdom Affairs, The Hague

    Google Scholar 

  • MoI (2009) Working with scenarios, risk, assessment and capabilities in the national safety and security strategy of the Netherlands. Ministry of the Interior and Kingdom Relations, The Hague

    Google Scholar 

  • Morgan GC, Rawlings GE & Sobkowicz JC (1992) Evaluating total risk to communities from large debris flows, Proceedings of the 1st Canadian Symposium on Geotechnique and Natural Hazards, Vancouver, S 225–235

    Google Scholar 

  • Müller H (1995) Vorlesung Stochastik, Technische Universität Dresden

    Google Scholar 

  • Müller U (2003) Europäische Wirtschafts- und Sozialgeschichte II: Das lange 19. Jahrhundert. Lehrstuhl für Wirtschafts- und Sozialgeschichte der Neuzeit. Vorlesung. Europäische Universität Viadrina, Frankfurt (Oder)

    Google Scholar 

  • Müller-Jung J (2018) Gesunkene Lebenserwartung: Warum starben so viele früher? Frankfurter Allgemeine Zeitung, 16. August 2018, http://www.faz.net/aktuell/wissen/der-grund-fuer-die-gesunkene-lebenserwartung-in-westlichen-laendern-15741064.html

  • Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349(9063):1436–1442

    Google Scholar 

  • NCHS (2001) National Centre for Health Statistics: National Vital Statistics Report, Vol 48, No 18, 7

    Google Scholar 

  • NDCP (2012) Nasjonalt Risikobilde (NRB), Norwegian Directorate for Civil Protection and Emergency Planning, Tønsberg

    Google Scholar 

  • NICE (2020) Improving health and social care through evidence-based guidance, National Institute for Health and care Excellence, UK, https://www.nice.org.uk

  • NRC (1975) Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Executive Summary. WASH-1400 (NUREG-75/014). Rockville, USA: Federal Government of the United States, U.S. Nuclear Regulatory Commission

    Google Scholar 

  • ODESC (2011) New Zealand’s National Security System, Auckland

    Google Scholar 

  • OECD (2009) Studies in risk management. Innovation in Country Risk Management, Paris.

    Google Scholar 

  • Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy, Science 2002, 296, S 1029–1031

    Google Scholar 

  • Othman MHDB, Wahab MFA, Ngadi N, Ali MWM, Ahmad A (2013) Introduction to chemical process safety, SKF 4163: Safety in Process Plant Design, UTM University Tecknologi Malaysia, OpenCourseWare, ocw.utm.my

    Google Scholar 

  • Parfit M (1998) Living with Natural Hazards. National Geographic, Vol. 194, No. 1, July 1998, S 2-39

    Google Scholar 

  • Paté-Cornell ME (1994) Quantitative safety goals for risk management of industrials facilities, Structural Safety, 13, S 145-157

    Google Scholar 

  • Petroski H (1993) Engineering: predicting failure. American Scientist 81(2):110–113

    Google Scholar 

  • Petroski H (2006a) Past and future bridge failures. In: Insker I.: History of Technology: Vol 26: 2005, published 2006a, New York, S 185–200

    Google Scholar 

  • Petroski H (2006b) Success through failure: the paradox of design. Princeton University Press, Princeton

    Google Scholar 

  • PLANAT (2015) Sicherheitsniveau für Naturgefahren – Materialen, Eine Sammlung von Unterlagen, welche Planat zur Erarbeitung ihrer strategischen Empfehlungen beigezogen bzw. erarbeitet hat. Bern, S 68

    Google Scholar 

  • Pliskin JS, Shepard DS, Weinstein MC (1980) Utility functions for life years and health status. Oper Res 28:206–244

    Google Scholar 

  • Proske D (2004) Katalog der Risiken, Dirk Proske Verlag, Dresden, 1. Auflage

    Google Scholar 

  • Proske (2019) Der 30-Jahre-Zyklus der Brückeneinstürze und seine Konsequenzen, 29. Dresdner Brückenbausymposium, Dresden

    Google Scholar 

  • Proske, D. & Schmid, M. (2021) Vergleich der Einsturzhäufigkeiten und der Versagenswahrscheinlichkeit von Hochbauten, Bautechnik, eingereicht

    Google Scholar 

  • Proske, D. (2012): Vollprobabilistische Ermittlung der Fragility-Kurve einer Stahldruckschale bei Wasserstoff-Deflagration. Bautechnik 89(Heft 1)

    Google Scholar 

  • Proske, D. (2018a). Bridge collapse frequencies versus failure probabilities. Springer-Verlag, Cham

    Google Scholar 

  • Proske, D. (2018b). Comparison of Large Dam, Failure Frequencies with Failure Probabilities, Beton- und Stahlbetonbau 113 (S2): 16th International Probabilistic Workshop, S 2–6

    Google Scholar 

  • Proske, D.; Spyridis, P.; Heinzelmann, L. (2019). Comparison of Tunnel Failure Frequencies and Failure Probabilities. Yurchenko, D.; Proske, D. (eds): Proceedings of the 17th International Probabilistic Workshop, Edinburgh, S 177–182

    Google Scholar 

  • Rackwitz R (1998) Zuverlässigkeit und Lasten im konstruktiven Ingenieurbau. Technische Universität München, Vorlesungsskript, S 1998

    Google Scholar 

  • Rad MK (2014) Global Risk Assessment of Natural Disasters: new perspectives, PhD Thesis, University of Waterloo, Waterloo, Kanda

    Google Scholar 

  • Rajgor DD, Lee MH, Archuleta S, Bagdasarian N, Quek SC (2020) The many estimates of the COVID-19 case fatality rate. Lancet: Infektionen 20:776–777

    Google Scholar 

  • Randsaeter A (2000) Risk assessment in the offshore industry, Proceedings – Part 2/2 of Promotion of Technical Harmonization on Risk-Based Decision- Making, Workshop, May 2000, Stresa, Italy

    Google Scholar 

  • Rau R, Schmertmann CP (2020) District-level life expectancy in Germany. Dtsch Arztebl Int 117:493–499

    Google Scholar 

  • Remund A, Camarda CG, Riffe T (2018) A cause-of-death decomposition of young adult excess mortality. Demography 55(3):957–978

    Google Scholar 

  • Ressing M, Blettner M, Klug SJ (2010) Auswertung epidemiologischer Studien, Deutsches Ärzteblatt, Jg. 107, Heft 11, 19. März 2010, S 187–192

    Google Scholar 

  • Rickenmann D (2005) Concepts of hazard mapping and land use planning, Vorlesung Integral Risk Management, Vorlesungsunterlagen. Universität für Bodenkultur Wien

    Google Scholar 

  • RKI (2021) Todesfälle nach Sterbedatum (18.11.2021), https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/COVID-19_Todesfaelle.html

  • Rodrigues MA, Arezes PM, Leao CP (2015) Defining risk acceptance criteria in occupational settings: A case study in the furniture industrial sector. Safety Sci 80:288–295

    Google Scholar 

  • Roser M, Ritchie H, Ortiz-Ospina E, Hasell J (2020) Coronavirus Pandemic (COVID-19), Published online at OurWorldInData.org. https://ourworldindata.org/coronavirus

  • Sassi F (2006) Calculating QALYs, comparing QALY and DALY calculations. Health Policy and Planning 21:402–408,

    Google Scholar 

  • Scawthorn C. (2006) A brief history of seismic risk assessment. In: Bostrom A, French S, Gottlieb S (eds) Risk assessment, modeling and decision support. Risk, governance and society, Vol 14. Springer, Berlin, Heidelberg

    Google Scholar 

  • SCCA (2011) A First Step towards a National Risk Assessment: National Risk Identification, Stockholm

    Google Scholar 

  • Schappert J (2020) Keinen Bock mehr auf Corona-Zahlen? Telepolis, https://www.heise.de/tp/features/Keinen-Bock-mehr-auf-Corona-Zahlen-4847861.html

  • Scheidl W (2015) Death and the city: ancient Rome and beyond, Version 1.0, Princeton/Stanford Working Papers in Classics

    Google Scholar 

  • Schelhase T, Weber S (2007) Die Todesursachenstatistik in Deutschland, Probleme und Perspektiven. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 50(Heft 7):969–976

    Google Scholar 

  • Schmid W (2005) Risk Management Down Under. Risknews 03/05, S 25–28

    Google Scholar 

  • Schnieder E, Drewes J (2008) Bemessung und Kenngrößen der Verkehrssicherheit. Zeitschrift für Verkehrssicherheit 54(3):117–123

    Google Scholar 

  • Borasio GD (2011) Über das Sterben – Was wir wissen, Was wir tun können, Wie wir uns darauf einstellen. Verlag C. H, Beck, München

    Book  Google Scholar 

  • SBB (2015) Managementsystem SBB Konzern: Teil Safety, Methodik Riskmanagement Safety bei der SBB, Regelwerk K 252.0

    Google Scholar 

  • SBB (2014) Ausführungsbestimmung Risikomanagement Infrastruktur, I-00024, 1.5.2014

    Google Scholar 

  • Scholz V (2014) Die Zählung und die Erfassung der Bevölkerung in ihrer historischen Entwicklung, Statistisches Monatsheft Baden-Württemberg, Heft 2, S 45–53

    Google Scholar 

  • Schueremans L (2001) Probabilistic evaluation of structural unreinforced masonry, December 2001, Dissertation, Katholieke Universiteit Leuven, Faculteit Toegepaste Wetenschappen, Departement Burgerlijke Bouwkunde, Heverlee, Belgien

    Google Scholar 

  • Schütz H, Wiedemann P, Hennings W, Mertens J, Clauberg M (2003) Vergleichende Risikobewertung: Konzepte, Probleme und Anwendungsmöglichkeiten. Abschlussbericht zum BfS-Projekt StSch 4217. Forschungszentrum Jülich GmbH, Programmgruppe „Mensch, Umwelt, Technik“

    Google Scholar 

  • Schweckendiek T, Roubos A, Jonkman SN (2018) Risk-based taret reliability indices for quay walls. Struct Safety 75:89–109

    Google Scholar 

  • SFA (2018) WES Review 2018: Non-threshold based genotoxic carcinogens. Australian workplace exposure standards and advisory notations, Canberra

    Google Scholar 

  • Shkolnikov V, Barbieri M, Wilmoth J (2018) The Human Mortality Database (HMD), https://www.mortality.org/

  • Shortreed J, Hicks J & Craig L (2003) Basic framework for Risk Management – Final report. March 28, 2003, Network for environmental risk assessment and management. Prepared for the Ontario Ministry of the Environment

    Google Scholar 

  • Slovic P (1999) Trust, Emotion, Sex, Politics, and Science: Surveying the Risk-Assessment Battlefield, Risk Analysis, 19, Nr. 4, S 689-701

    Google Scholar 

  • Sibly PG, Walker AC (1977) Structural accidents and their causes. Proceedings of the Institution of Civil Engineers, 62, Part 1, S 191–208

    Google Scholar 

  • Siegele PF (2017) Bewertung historischer Lawinenschutzbauten auf dem Schwager Gonde im Paznauntal, Visionen im Lawinenschutz. Wildbach und Lawinenverbau 81(Heft Nr. 179):216–225

    Google Scholar 

  • Skjong R (2002a) Risk acceptance criteria: current proposals and IMO position. Surface transport technologies for sustainable development, Valencia, Spain, 4–6 June 2002a

    Google Scholar 

  • Skjong R (2002b) Risk acceptance criteria: current proposals and IMO position, surface transport technologies for sustainable development, Valencia, Spain 4–6 June 2002b,S 20

    Google Scholar 

  • Skjong R, Ronold K (1998) Societal indicators and risk acceptance. 17th International Conference on Offshore Mechanics and Arctic Engineering, 1998 by ASME, OMAE98–1488

    Google Scholar 

  • Sorenson C, Drummond M, Kanavos P (2008) Ensuring value for money in health care, the role of health technology assessment in the European Union, Observatory Studies Series No. 11. MPG Books Ltd, Bodmin

    Google Scholar 

  • Sovacool BK, Kryman M & Laine E (2015) Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents. Energy 90:2016–2027

    Google Scholar 

  • Spaethe G (1992) Die Sicherheit tragender Baukonstruktionen, 2, Neubearbeitete. Springer Verlag, Wien

    Book  Google Scholar 

  • Spitzer M (2019) Einsamkeit – Die unerkannte Krankheit. Droemer Taschenbuch

    Google Scholar 

  • Spoung J, Smith E, Olufsen O, Skjong R (2014) EMSA/OP/10/2013: Risk Level and Acceptance Criteria for Passenger Ships. First interim report, part 2: Risk Acceptance Criteria, European Maritime Safety Agency, Report Nr. PP092663/1-1/2, Rev. 2, 28.4.2014, DNV, Hovik

    Google Scholar 

  • SSI (2013) Quantifizierte Risikoanalysen als Basis für die Planung komplexer Sicherheitssysteme, Schweizerische Vereinigung unabhängiger Sicherhetisingenieure und - berater, SSI Bulletin, No. 1/2013, https://www.ssischweiz.ch/project/ssi-bulletin-12013-quantifizierte-risikoanalysen/, S 1–3

    Google Scholar 

  • Steedman S (2010) The long learningcurve. Ingenia, Issue 44, S 3

    Google Scholar 

  • Sterck O, Roser M, Ncube M, Thewissen S (2018) Allocation of development assistance for health: is the predominance of national income justified. Health Policy and Planning 33(supl_1):i14–i23

    Google Scholar 

  • Stille H (2017) Geological Uncertainties in Tunnelling – Risk Assessment and Quality Assurance, Sir Muir Wood Lecture 2017, April 2017, International Tunnelling and Uncerground Space Association, Lausanne

    Google Scholar 

  • Stiller A (2020) Zahlen, bitte! 3,4 % Coronavirus-Fallsterblichkeit, eine „false Number“? Etwas Pandemie-Statistik, Heise-Online, 3/2020, https://www.heise.de/newsticker/meldung/Zahlen-bitte-3-4-Coronavirus-Fallsterblichkeit-False-Number-4679338.html

  • Suda J, Rudolf-Miklaus F (2012) Bauen und Naturgefahren – Handbuch für konstruktiven Gebäudeschutz. Springer Verlag, Wien New York

    Google Scholar 

  • Taksler GB, Rothberg MB (2017) Assessing years of life lost versus number of deaths in the United States, 1995–2015. Am J Public Health 107(10):1653–1659

    Google Scholar 

  • Taricska MR (2014) An analysis of recent bridge failures in the United States (2000–2012). M.Sc. Thesis, The Ohio State University

    Google Scholar 

  • TAW (1988) Some considerations of an acceptable level of risk in the Netherlands, Technische Adviescommissie voor de Waterkeringen

    Google Scholar 

  • Technology Review (1979) Cambridge, Massachusetts, S 45

    Google Scholar 

  • Tengs TO, Adams ME, Pliskin JS, Safran DG, Siegel JE, Weinstein MC & Graham JD (1995) Five-hundred life-saving interventions and their costeffectiveness. Risk Analysis 15(3):369–390

    Google Scholar 

  • Torrance GW, Thomas WH, Sackett DL (1972) A utility maximization model for evaluation of health care programs. Health Serv Res 7:118–133

    Google Scholar 

  • Trbojevic VM (2005a) Risk Criteria in EU, ESREL 2005a, Poland, 27–30 June 2005a, 6 Seiten

    Google Scholar 

  • Trbojevic VM (2005b) Risk criteria in EU, ESREL’05, Poland, 27–30 June 2005b

    Google Scholar 

  • Trbojevic VM (2005c). Risk Criteria in EU, ESREL 2005c, Poland, 27–30 June 2005c, 6 pages

    Google Scholar 

  • Trbojevic VM (2009a) Another look at risk and structural reliability criteria. Struct Saf 31:245–250

    Article  Google Scholar 

  • Twyrdy V (2010) Die Bewältigung von Naturkatastrophen in mitteleuropäischen Agrargesellschaften seit der Frühen Neuzeit. Katastrophen machen Geschichte, Umweltgeschichtliche Prozesse im Spannungsfeld von Ressourcennutzung und Extremereignis, Patrick Masus, Jana Sprenger und Eva Mackowiak (Hrsg.), Universitätsverlag Göttingen, S 13–30

    Google Scholar 

  • UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030, Sendai

    Google Scholar 

  • Universität Hohenheim: Kurzscript zum Teil Wirtschaftsgeschichte im Rahmen der Vorlesung „Problemorientierte Einführung in die Wirtschaftswissenschaften – Teil Volkswirtschaftslehre“. http://uni-hohenheim.de/~www570a/poe_skript.html, 2004

  • Universität Stuttgart (2018) EcoSens, Web 2, Institute of energy economics and rational energy use (IER), http://ecosenseweb.ier.uni-stuttgart.de/

  • van Breugel K (2001) Establishing performance criteria for concrete protective structures fib-symposium: Concrete & Environment, Berlin 3–5. Oktober 2001

    Google Scholar 

  • van Coile R, Gernay T, Hopkin D, Khorasani NE (2019) Resilience targets for structural fire design – An exploratory study, In: International Probabilistic Workshop 2019. 11–13 September, Edinburgh, United Kingdom, S 196–201

    Google Scholar 

  • van der Merwe A (2019) Nuclear energy saves lives. Nature 570(7759):36

    Google Scholar 

  • Vandormael S, Meirschaert A, Steyaert J, De Lepeleire J (2018) Mortality statistics not trustworthy. Tijdschrift voor Geneeskunde 74(5):311–315

    Google Scholar 

  • Varnes DJ (1984) The international association of engineering geology commission on landslides and other mass movements 1984. Landslide hazard zonation: a review of principles and practice, Natural Hazards 3, 63. Paris, France, UNESCO

    Google Scholar 

  • Vennemann MMT, Berger K, Richter D, Baune BT (2006) Unterschätzte Suizidraten durch unterschiedliche Erfassung in Gesundheitsämtern. Deutsches Ärtzeblatt 103(Heft 18):S A1222–A1226

    Google Scholar 

  • Vidmar P, Petelin S, Perkovič M (2010) Approach in Risk Assessment for LNG Terminals, P. van Gelder, L. Gucma, D. Proske: Proceedings of the 8th International Probabilistic Workshop, Szczecin 2010, S 355–376

    Google Scholar 

  • Viscusi W (1995) Risk, regulation and responsibility: principle for Australian risk policy. Risk, regulation and responsibility promoting reason in workplace and product safety regulation. Proceedings of a conference held by the Institute of Public Affairs and the Centre for Applied Economics, Sydney, 13 July 1995. http://www.ipa.org.au/Conferences/viscusi.html

  • Vrijling JK, van Gelder PHAJM, Goossens LHJ, Voortman HG, Pandey MD (2001) A framework for risk criteria for critical infrastructures: fundamentals and case studies in the Netherlands. Proceedings of the 5th Conference on Technology, Policy and Innovation, „Critical Infrastructures“, Delft, The Netherlands, June 26–29, 2001, Uitgeverrij Lemma BV

    Google Scholar 

  • Vrouwenfelder T (2002) Reliability Based Code calibration – The use ofteh JCSS Probabilistic Model Code, JCSS Workshop on Code Calibration, Zurich, March 21/22, 8 Seiten (Liste, in welchen ländern welche Zielwerte)

    Google Scholar 

  • Vrouwenvelder T (2002) Developments towards full probabilistic design codes. Struct Safety 24:417–432

    Google Scholar 

  • Wahlström B, Lundin J, Jansson O, Hällstorp E (2018) Common life safety targets in traffic tunnels. Eighth international symposium on tunnel safety and security, Boras, Sweden, March 14–16, 2018, S 175–185

    Google Scholar 

  • Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Performance Constructed Facilities (ASCE) 17:144–150

    Google Scholar 

  • Weiland SK, Rapp K, Klenk J & Keil U (2006) Zunahme der Lebenserwartung – Größenordnungen, Determinanten und Perspektiven. Deutsches Ärzteblatt, Jg. 103, Heft 16, 21. April 2006, S A 1072–A 1077

    Google Scholar 

  • Weiss C (2007) Communicating uncertainty in intelligence and other professions. Int J Intell Counter Intell 21(1):57–85

    Google Scholar 

  • Wellcome Trust (2021) Introduction to mortality statistics in England and Wales: 17th-20th century, Digital collections, https://wellcomelibrary.org/collections/subject-guides/introduction-to-mortality-statistics-in-england-and-wales/

  • Wengler A, Rommel A, Plaß D, Gruhl H, Leddin J, Ziese T, von der Lippe E on behalf of the BURDEN 2020 Study Group (2021) Years of life lost to death—a comprehensive analysis of mortality in Germany conducted as part of the BURDEN 2020 project. Dtsch Arztebl Int 118:137–144

    Google Scholar 

  • White M (2003) Twenthieth Centuray Atlas – Worldwide Statistcs of Death Tolls. http://users.erols.com/mwhite28

  • Wilmanns JC (2003) Die ersten Krankenhäuser der Welt: Sanitätsdienst des Römischen Reiches schu erstmals professionelle medizinische Versorgung. Deutsches Ärzteblatt 100(Heft 40):A-2592-A2597

    Google Scholar 

  • Wolf S, Aron L (2018) Failing health of the United States. BMJ 360:k496

    Article  Google Scholar 

  • World Bank (2014) Transport for health. The global burden of disease from motorized road transport. Institute for Health Metrics and Evaluation, University of Washington, The World Bank Group, Washington D.C

    Google Scholar 

  • Young RD (2018) Validated living worldwide supercentenarians, living and recently deceased: February 2018. Rejuvenation Res 21(1):67

    Google Scholar 

  • Zack F, Rothschild MA, Wegener R (2007) Blitzunfall – Energieübertragungsmechanismen und medizinische Folgen, Deutsches Ärzteblatt, 104, 51-52, S A-3545-A-3549

    Google Scholar 

  • Zeckhauser R, Shephard D (1976) Where now for saving lives. Law Contemp Probl 40(4):5–45

    Google Scholar 

  • Zentner, A. Nadjarian, N. Humbert & E. Viallet (2008): Estimation of fragility curves for seismic probabilistic risk assessment by means of numerical experiments. In: Graubner C-A, Schmidt H, Proske D (Eds.) 6th International Probabilistic Workshop, 26–27 November 2008, Darmstadt, Germany 2008, Technische Universität Darm-stadt, S 305–316

    Google Scholar 

  • Zielinski P (2017) Societal risk – how we measure and evaluate it. 85th Annual Meeting of International Commission on Large Dams, Prague, Czech Republic, July 3–7 2017, PP 10

    Google Scholar 

  • zur Nieden F, Sommer B, Lüken S (2020) Sonderauswertung der Sterbefallzahlen 2020. Statistisches Bundesamt WISTA 4:38–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Proske .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proske, D. (2022). Risikoparameter. In: Katalog der Risiken. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-37083-1_3

Download citation

Publish with us

Policies and ethics