Skip to main content

Superpixel Pre-segmentation of HER2 Slides for Efficient Annotation

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2022

Zusammenfassung

Supervised deep learning has shown state-of-the-art performance for medical image segmentation across different applications, including histopathology and cancer research; however, the manual annotation of such data is extremely laborious. In this work, we explore the use of superpixel approaches to compute a pre-segmentation of HER2 stained images for breast cancer diagnosis that facilitates faster manual annotation and correction in a second step. Four methods are compared: standard simple linear iterative clustering (SLIC) as a baseline, a domain adapted SLIC, and superpixels based on feature embeddings of a pretrained ResNet-50 and a denoising autoencoder. To tackle oversegmentation, we propose to hierarchically merge superpixels, based on their content in the respective feature space. When evaluating the approaches on fully manually annotated images, we observe that the autoencoder-based superpixels achieve a 23% increase in boundary F1 score compared to the baseline SLIC superpixels. Furthermore, the boundary F1 score increases by 73% when hierarchical clustering is applied on the adapted SLIC and the autoencoder-based superpixels. These evaluations show encouraging first results for a pre-segmentation for efficient manual refinement without the need for an initial set of annotated training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Loibl S, Gianni L. HER2-positive breast cancer. Lancet. 2017;389(10087):2415–29.

    Google Scholar 

  2. Khameneh FD, Razavi S, Kamasak M. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Comput Biol Med. 2019;110:164–74.

    Google Scholar 

  3. Albayrak A, Bilgin G. Automatic cell segmentation in histopathological images via twostaged superpixel-based algorithms. Med Biol Eng Comput. 2019;57(3):653–65.

    Google Scholar 

  4. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. Seminars in Cancer Biology. Vol. 72. 2021:123–35.

    Google Scholar 

  5. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2274– 82.

    Google Scholar 

  6. Gaur U, Manjunath B. Superpixel embedding network. IEEE Trans Image Process. 2019;29: 3199–3212.

    Google Scholar 

  7. Ruifrok AC, Johnston DA et al. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9.

    Google Scholar 

  8. Chaibou MS, Conze PH, Kalti K, Solaiman B, MahjoubMA.Adaptive strategy for superpixelbased region-growing image segmentation. J Electron Imaging. 2017;26(6):061605.

    Google Scholar 

  9. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31(3):274–95.

    Google Scholar 

  10. Marzahl C, Aubreville M, Bertram CA, Maier J, Bergler C, Kröger C et al. EXACT: a collaboration toolset for algorithm-aided annotation of images with annotation version control. Sci Reps. 2021;11(1):4343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Öttl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Öttl, M. et al. (2022). Superpixel Pre-segmentation of HER2 Slides for Efficient Annotation. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_54

Download citation

Publish with us

Policies and ethics