Skip to main content

Spatiotemporal Attention for Realtime Segmentation of Corrupted Sequential Ultrasound Data

Improving Usability of AI-based Image Guidance

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2022

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1590 Accesses

Zusammenfassung

Image-guided diagnostics with AI assistance, e.g. compression-ultrasound for detecting deep vein thrombosis, requires stable, robust and real-time capable analysis algorithms that best support the user. When using anatomical segmentations for user guidance the spatiotemporal consistency is of great importance, but point-of-care modalities deliver signal which in many frames is hard to interpret. Since 2D+t models with 3D CNNs are not applicable for many mobile end devices,we propose a newspatiotemporal attention approach that re-uses deep backbone features from previous frames to learn and optimally fuse all available image information. Proof-of-concept experiments demonstrate an improvement of over 8% for the segmentation compared to simpler 2D+t models (using several frames as multi-channel input).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Wang W, Zhou T, Porikli F, Crandall D, Van Gool L. A survey on deep learning technique for video segmentation. preprint arXiv:2107.01153. 2021.

    Google Scholar 

  2. Novikov AA, Major D, Wimmer M, Lenis D, Bühler K. Deep sequential segmentation of organs in volumetric medical scans. IEEE T-MI. 2018;38(5):1207–15.

    Google Scholar 

  3. Duke B, Ahmed A,Wolf C, Aarabi P, Taylor GW. Sstvos: sparse spatiotemporal transformers for video object segmentation. IEEE/CVF CVPR. 2021:5912–21.

    Google Scholar 

  4. Kainz B, Heinrich MP, Makropoulos A, Oppenheimer J, Mandegaran R, Sankar S et al. Noninvasive diagnosis of deep vein thrombosis from ultrasound imaging with machine learning. NPJ Digit Med. 2021;4(1):1–18.

    Google Scholar 

  5. Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M et al. Searching for mobilenetv3. ICCV. 2019:1314–24.

    Google Scholar 

  6. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graf, L., Mischkewitz, S., Hansen, L., Heinrich, M.P. (2022). Spatiotemporal Attention for Realtime Segmentation of Corrupted Sequential Ultrasound Data. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_50

Download citation

Publish with us

Policies and ethics