Zusammenfassung
Image-guided diagnostics with AI assistance, e.g. compression-ultrasound for detecting deep vein thrombosis, requires stable, robust and real-time capable analysis algorithms that best support the user. When using anatomical segmentations for user guidance the spatiotemporal consistency is of great importance, but point-of-care modalities deliver signal which in many frames is hard to interpret. Since 2D+t models with 3D CNNs are not applicable for many mobile end devices,we propose a newspatiotemporal attention approach that re-uses deep backbone features from previous frames to learn and optimally fuse all available image information. Proof-of-concept experiments demonstrate an improvement of over 8% for the segmentation compared to simpler 2D+t models (using several frames as multi-channel input).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
Wang W, Zhou T, Porikli F, Crandall D, Van Gool L. A survey on deep learning technique for video segmentation. preprint arXiv:2107.01153. 2021.
Novikov AA, Major D, Wimmer M, Lenis D, Bühler K. Deep sequential segmentation of organs in volumetric medical scans. IEEE T-MI. 2018;38(5):1207–15.
Duke B, Ahmed A,Wolf C, Aarabi P, Taylor GW. Sstvos: sparse spatiotemporal transformers for video object segmentation. IEEE/CVF CVPR. 2021:5912–21.
Kainz B, Heinrich MP, Makropoulos A, Oppenheimer J, Mandegaran R, Sankar S et al. Noninvasive diagnosis of deep vein thrombosis from ultrasound imaging with machine learning. NPJ Digit Med. 2021;4(1):1–18.
Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M et al. Searching for mobilenetv3. ICCV. 2019:1314–24.
Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Graf, L., Mischkewitz, S., Hansen, L., Heinrich, M.P. (2022). Spatiotemporal Attention for Realtime Segmentation of Corrupted Sequential Ultrasound Data. In: Maier-Hein, K., Deserno, T.M., Handels, H., Maier, A., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2022. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3_50
Download citation
DOI: https://doi.org/10.1007/978-3-658-36932-3_50
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-36931-6
Online ISBN: 978-3-658-36932-3
eBook Packages: Computer Science and Engineering (German Language)