Skip to main content

Comparison: Differential Calculus Through Applications

  • Chapter
  • First Online:
Comparison of Mathematics and Physics Education II

Abstract

Three perspectives on the concept of derivatives at school are commonly applied: the geometric, the algebraic–analytical and the application-oriented. Often the geometric perspective is used for introducing the concepts of calculus on given curves as graphs of a function. However, students’ experience with tangents as global support tangent lines, e.g., tangents to circles, differs from the new interpretation of a tangent as a straight line that locally has the same slope at the point of osculation as the function at the same point. These different perspectives on tangents are a well-described problem for students starting on differential calculus. The algebraic–analytical perspective seems to be more complicated than the geometric perspective, as it deals with the concept of limit, which is not mandatory in all curricula in its rigorous form, at least in German classrooms today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Catenary: Which curve describes a chain freely suspended at its ends? While Galileo still suspected that it was a parabola, Bernoulli showed that the curve can be represented by the hyperbolic cosine. Brachistochrone: In a vertical plane, two points, \(\mathrm{A}\) and \(\mathrm{B}\), are given. Which curve describes the path of a ball that rolls from \(\mathrm{A}\) to \(\mathrm{B}\) in the shortest time possible?

References

  • Bauersfeld, H. (1994). Theoretical perspectives on interaction in the mathematics classroom. In R. Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 133–146). Kluwer.

    Google Scholar 

  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62, 750.

    Article  Google Scholar 

  • Bressoud, D., Ghedamsi, I., Martinez-Luaces, V., & Törner, G. (2016). Teaching and learning of calculus. Springer. https://doi.org/10.1007/978-3-319-32975-8.

    Book  Google Scholar 

  • Christensen, W. M., & Thompson, J. R. (2012). Investigating graphical representations of slope and derivative without a physics context. Physical Review Physics Education Research, 8(2). https://doi.org/10.1103/PhysRevSTPER.8.023101.

  • Chu, C. T., & Nguyen, T. D. (2017). Analysis of didactic transposition in teaching the concept of derivative in high schools in the case of Vietnamese textbooks in 2000, 2006 and American textbook in 2010. HNUE Journal of Science Educational Science, 62(6), 10–18. https://doi.org/10.18173/2354-1075.2017-0123.

    Article  Google Scholar 

  • Cui, L., Rebello, N. S., & Bennett, A. G. (2006). College students’ transfer from calculus to physics. AIP Conference Proceedings, 818(1), 37–40. https://doi.org/10.1063/1.2177017.

    Article  Google Scholar 

  • Danckwerts, R., & Vogel, D. (2006). Analysis verständlich unterrichten: Mathematik Primar- und Sekundarstufe. Elsevier.

    MATH  Google Scholar 

  • Dilling, F., & Krause, E. (2020). Zur Authentizität kinematischer Zusammenhänge in der Differentialrechnung—eine Analyse ausgewählter Aufgaben. MNU Journal, 2, 163–168.

    Google Scholar 

  • Edwards, C. H., Jr. (1979). The historical development of the calculus. Springer.

    Book  Google Scholar 

  • Evans, G. W. (1917). Cavalieri’s theorem in his own words. American Mathematical Monthly, 24, 447–451.

    Article  MathSciNet  Google Scholar 

  • Greefrath, G., Oldenburg, R., Siller, H. S., Ulm, V., & Weigand, H. G. (2016). Aspects and “Grundvorstellungen” of the concepts of derivative and integral. Journal Für Mathematik-Didaktik, 37(S1), 99–129. https://doi.org/10.1007/s13138-016-0100-x.

    Article  Google Scholar 

  • Martínez-Torregrosa, J., López-Gay, R., & Gras-Martí, A. (2006). Mathematics in physics education: Scanning historical evolution of the differential to find a more appropriate model for teaching differential calculus in physics. Science & Education, 15(5), 447–462. https://doi.org/10.1007/s11191-005-0258-y.

    Article  Google Scholar 

  • Marrongelle, K. A. (2004). How students use physics to reason about calculus tasks. School Science and Mathematics, 104(6), 258–272. https://doi.org/10.1111/j.1949-8594.2004.tb17997.x.

  • Rasmussen, C., Marrongelle, K., & Borba, M. C. (2014). Research on calculus: What do we know and where do we need to go? ZDM Mathematics Education, 46(4), 507–515. https://doi.org/10.1007/s11858-014-0615-x.

    Article  Google Scholar 

  • Rizcallah, J. A. (2018). Projectile motion without calculus. Physics Education, 53(4), 045002.

    Google Scholar 

  • Tall, D. O. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. ZDM Mathematics Education, 41(4), 481–492. https://doi.org/10.1007/s11858-009-0192-6.

    Article  Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

    Article  Google Scholar 

  • Tran, V. H., & Vu, T. D. N. N. (2011). Mathematic textbook grade 11 (5th ed.). Vietnam Education Publishing House.

    Google Scholar 

  • Trowbridge, D. E., & McDermott, L. C. (1980). Investigation of student understanding of the concept of velocity in one dimension. American Journal of Physics, 48, 1020.

    Article  Google Scholar 

  • Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of the concept of acceleration in one dimension. American Journal of Physics, 49, 242.

    Article  Google Scholar 

  • Witzke, I. (2014). Zur Problematik der empirisch-gegenständlichen Analysis des Mathematikunterrichtes. Der Mathematikunterricht, 60(2), 19–31.

    Google Scholar 

  • Witzke, I., & Spies, S. (2016). Domain-specific beliefs of school calculus. Journal Für Mathematik-Didaktik, 37(S1), 131–161. https://doi.org/10.1007/s13138-016-0106-4.

    Article  Google Scholar 

  • Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. In E. Dubinsky, A. Schoenfeld, & J. J. Kaput (Eds.), Research in collegiate mathematics education IV (pp. 103–127). American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Holten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoffels, G., Witzke, I., Holten, K. (2022). Comparison: Differential Calculus Through Applications. In: Dilling, F., Kraus, S.F. (eds) Comparison of Mathematics and Physics Education II. MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-36415-1_17

Download citation

Publish with us

Policies and ethics