Skip to main content

Bearings for Flywheel Energy Storage

  • Chapter
  • First Online:
Flywheel Energy Storage
  • 381 Accesses

Abstract

Bearings for flywheel energy storage systems (FESS) are absolutely critical, as they determine not only key performance specifications such as self-discharge and service live, but may cause even safety-critical situations in the event of failure. By analyzing aspects of the FESS supersystem, requirements and load collectives for the bearing system are defined. The reader is introduced to the topic of gyroscopic motion, which is of high relevance for the determination of vehicular FESS bearing loads. The importance of flywheel balancing to reduce radial bearing loads is also presented in an easy to understand way. Rotor dynamics and resonance phenomena are considered, and practical examples of bearing seat designs, which can mitigate effects such as residual unbalance, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Design aspects may also influence the choice of FESS mount. A gimbal can only be used with electro-mechanic flywheels, while purely mechanic systems require a rigid mount because their power is transferred via shafts and gears.

  2. 2.

    Investigations have been carried out with compliant rotors (wound ropes or fiber bundles), but these concepts have not yet been brought to production maturity.

References

  1. F. Nelson (2007) Rotor Dynamics without Equations. International Journal of COMADEM, Nr. 10(3), pp. 2–10, Issue July 2007.

    Google Scholar 

  2. A. Buchroithner, A. Brandstätter and M. Recheis (2017) Determining Loads of Rolling Element Bearings in Mobile Flywheel Energy Storage Systems. IEEE Vehicular Technology Magazine, Volume: 12 Issue: 3, pp. 83-94. DOI: https://doi.org/10.1109/MVT.2017.2657804

  3. J. Koyanagi (2011) Durability of filament-wound composite flywheel rotors. Mechanics of Time-Dependent Materials, Bd. 16, Nr. 1, pp. 71–83.

    Google Scholar 

  4. M. Recheis, A. Buchroithner, I. Andrasec, T. Gallien, B. Schweighofer, M. Bader and H. Wegleiter (2014) Improving kinetic energy storage for vehicles through the combination of rolling element and active magnetic bearings. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria. DOI: https://doi.org/10.1109/IECON.2013.6699884

  5. K. Magnus (1971) Kreisel – Theorie und Anwendung, Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-52162-1

  6. A. Brandstätter (2012) Mechanische Auslegung von Schwungrädern und Entwicklung eines Prüfstands zur Verifizierung der Eigenschaften für mobile Anwendungen. Institut für Maschinenelemente und Entwicklungsmethodik, Graz University of Technology, Austria.

    Google Scholar 

  7. M. Recheis (2017) Lifespan prolonging measures for bearings of mobile storage systems. Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria.

    Google Scholar 

  8. G. Bischof, K. Reisinger, T. Singraber and A. Summer (2014) Investigation of a passenger car‘s dynamic response due to a flywheel-based kinetic energy storage. International Journal of Vehicle Mechanics and Mobility: Vehicle System Dynamics, Bd. 52, Nr. 2, pp. 201–217. https://doi.org/https://doi.org/10.1080/00423114.2013.869609

  9. Parry People Movers Ltd. (2009) PPM Technology. Parry People Movers Ltd. Overend Road, Cradley Heath, West Midlands, B64 7DD, UK. http://www.parrypeoplemovers.com/technology.htm. [Accessed August 20th 2016].

  10. Schenck-RoTec GmbH (2017) Warum ist Auswuchten so wichtig? The DÜRR Group, Bietigheim-Bissingen, Deutschland. https://schenck-worldwide.com/at-de1/why-balancing/index.php. [Accessed April 25th 2017].

  11. H. Schneider (2013) Auswuchttechnik, VDI-Buch, Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-24914-3

  12. SKF Gruppe (2014) SKF Hochgenauigkeitslager der Reihe „Super-precision bearings“. SKF GmbH, Gunnar-Wester-Straße 12, 97421 Schweinfurt, Deutschland.

    Google Scholar 

  13. K. Magnus, K. Popp and W. Sextro (2008) Schwingungen – Eine Einführung in die physikalischen Grundlagen und die theoretische Behandlung von Schwingungsproblemen. 8., überarbeitete Auflage. Vieweg+Teubner Verlag |GWV Fachverlage GmbH, Wiesbaden Germany.

    Google Scholar 

  14. P. Haidl, A. Buchroithner, M. Zisser, M. Bader, B. Schweighofer and H. Wegleiter (2016) Improved test rig for vibration control of a rotor bearing system. 23rd International Congress on Sound & Vibration (ICSV23), Athens, Greece.

    Google Scholar 

  15. M. Zisser, B. Schweighofer, H. Wegleiter, P. Haidl and M. Bader (2015) Test rig for active vibration control with piezoactuators. 22nd International Congress on Sound & Vibration (ICSV22), Florence, Italy.

    Google Scholar 

  16. M. Yovanovich (1970) Thermal Constriction Resistance Between Contacting Metallic Paraboloids: Application to Instrument Bearings. Proceedings of the 5th AIAA Thermodynamics Conference, pp. 337–358.

    Google Scholar 

  17. M. Yovanovich (1967) Thermal Contact Resistance across Elastically Deformed Spheres. Journal of Spacecraft and Rockets, vol. 1, pp. 119–122.

    Article  Google Scholar 

  18. M. Yovanovich (1967) Analytical and Experimental Investigation on the Thermal Resistance of Angular Contact Instrument Bearings. Instrumentation Laboratory, pp. 1–85.

    Google Scholar 

  19. A. Bejan (1989) Theory of Rolling Contact Heat Transfer. Journal of Heat Transfer Vol. 111, pp. 257–263.

    Article  Google Scholar 

  20. A. Baïri, N. Alilat, J. Bauzin, and N. Laraqi (2004) Three-dimensional stationary thermal behavior of a bearing ball. International Journal of Thermal Sciences Vol. 43, pp. 561–568.

    Google Scholar 

  21. A. Buchroithner, P. Haidl, H. Wegleiter, M. Simonyi and T. Murauer (2019) Design, operation and results of a low-cost test rig for investigation of thermal properties of rolling element bearings in vacuum. 18th European Space Mechanisms and Tribology Symposium (ESMATS2019), Munich, Germany, 18.-20. September 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buchroithner, A. (2023). Bearings for Flywheel Energy Storage. In: Flywheel Energy Storage. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-35342-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-35342-1_9

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-35341-4

  • Online ISBN: 978-3-658-35342-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics