Skip to main content

Rotors for Mobile Flywheel Energy Storage

  • Chapter
  • First Online:
Flywheel Energy Storage
  • 355 Accesses

Abstract

Flywheel rotors are a key component, determining not only the energy content of the entire flywheel energy storage system (FESS), but also system costs, housing design, bearing system, etc. Using simple analytic formulas, the basics of FESS rotor design and material selection are presented. The important differences between isotropic (steel) rotors and (anisotropic) fiber composite flywheels are explained in detail, and many practical examples are given in well-arranged tables. Finally, the design, manufacturing, and testing process of two different FESS rotors is presented, providing the reader with unprecedented insight into the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the “ pack level”, which includes the housing, balancing board, and cooling, the specific energy is further reduced

  2. 2.

    The term high cycle fatigue (HCF) was coined by August Wöhler (∗ 22 June 1819 in Soltau; † 21 March 1914 in Hannover, Germany). He researched the materials steel and iron. The “Wöhler diagram” named after him represents the relationship between the number of cycles to failure and the stress amplitude for a material under oscillating load [21].

  3. 3.

    The “E” in the designation has the historical background that these optical fibers were originally developed for electrical applications.

  4. 4.

    The “S” in the name comes from the English word “stiff” and already indicates an increased modulus of elasticity and tensile strength.

  5. 5.

    In the case of an integrated rotor topology, a carbon fiber bandage wound around the electrically active rotor would increase the air gap of the machine and thus reduce its efficiency.

  6. 6.

    Attempts have been made to design matrix-less rotors, using only flexible bundles of fibers, but so far this approach has not been realized successfully.

  7. 7.

    A more “good-natured” bursting behavior of the rotor allows the use of a lighter bursting housing and thus also increases the specific energy (Wh/kg) of the system.

  8. 8.

    MAGNETBONDER HT-01 by the company Vakuumschmelze with a density of 1.1 g/cm3 and a maximum shear stress of 7100 N/cm2.

  9. 9.

    The exploitation of this reduction potential does not only depend on the material price, but also requires optimized, cost-effective production processes!

References

  1. J. Feldhusen und K.-H. Grote (2007) Dubbel – Taschenbuch für den Maschinenbau, 22nd Edition. Springer, Berlin, Heidelberg, Germany

    Google Scholar 

  2. P Selke und B. Assmann (2006) Technische Mechanik – Band 2: Festigkeitslehre, 16th Edition, 2006. Oldenburg Wissenschaftsverlag GmbH, Munich, Germany.

    MATH  Google Scholar 

  3. F. Strößenreuther (1996) Machbarkeitsstudie und Konzept einer stationären Schwungradanlage zur dezentralen, verbraucherorientierten Energiespeicherung (Diplomarbeit), Lehrstuhl für Dampf- und Gasturbinen, Aachen, Germany.

    Google Scholar 

  4. G. Genta (1985) Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems. Butterworths, London, UK.

    Google Scholar 

  5. P. von Burg (1996) Schnelldrehendes Schwungrad aus Faserkunststoff, ETH Zürich, Schweiz.

    Google Scholar 

  6. S. Renner-Smith (1980) Energy Storage: Search for the Perfect Flywheel. Popular Science, Issue January 1980.

    Google Scholar 

  7. O.J. Fiske and M.R. Ricc (2005) Third Generation Flywheels for High Power Electricity Storage. LaunchPoint Technologies, Goleta, California, USA.

    Google Scholar 

  8. A. Kubo, H. Kameno and R. Takahata (2003) Development of a Compact Flywheel Energy Storage System. Koyo Engineering Journal, English Edition No. 163E.

    Google Scholar 

  9. J. Carter (2014) The use of the Gyrodrive hybrid system in bus, truck and off highway vehicles. GKN Hybrid Power, Grove UK.

    Google Scholar 

  10. J. Arseneaux (2011) 20 MW Flywheel Energy Storage Plant. Beacon Power LLC, Wilmington, Massachusetts, USA.

    Google Scholar 

  11. T. Dever (2013) Development of a High Specific Energy Flywheel Module and Studies to Quantify Its Mission Applications and Benefits. NASA, USA.

    Google Scholar 

  12. A. J. Deakin (2014) High performance and low CO2 from a Flybrid® mechanical kinetic energy recovery system. Torotrak Group PLC. Preston, Lancashire, UK.

    Google Scholar 

  13. R.J. Hayes, J.P. Kajs, R.C. Thompson and J.H. Beno (1999) Design and Testing of a Flywheel Battery for a Transit Bus. SAE International Congress and Exposition, Detroit, Michigan, USA.

    Google Scholar 

  14. Robert Hebner, Joseph Beno and Alan Walls (2002) Flywheel Batteries Come Around Again. IEEE Spectrum, pp. 46-51, Issue April 2002. https://spectrum.ieee.org/energy/the-smarter-grid/flywheel-batteries-come-around-again

  15. M. A. Pichot, J. M. Kramer, R. C. Thompson, R. J. Hayes and J. H. Beno (1997) The Flywheel Battery Containment Problem. 1997 SAE International Congress and Exposition, Detroit, Michigan, USA.

    Google Scholar 

  16. NEXUS Projects SL (2012) Durability of Composites – Fatigue. Martorell, Barcelona, Spain. http://nexusprojectes.com/durabilidad.aspx?lang=en. [Accessed August 17th 2016].

  17. Anthony J. Colozza (2000) High Energy Flywheel Containment Evaluation. NASA, Brook Park, Ohio, USA.

    Google Scholar 

  18. S.K. Ha, K.K. Jin and Y Huang (2008) Micro Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites. Journal of Composite Materials, Bd. 42 (18) pp. 1873–1895 Issue July 2008.

    Google Scholar 

  19. J. Koyanagi (2011) Durability of filament-wound composite flywheel rotors. Mechanics of Time-Dependent Materials, Bd. 16, Nr. 1, pp. 71–83.

    Google Scholar 

  20. H. P. Luckett (1979) PS/What’s News. Popular Mechanics, p. 75, Issue October 1979.

    Google Scholar 

  21. B. Nearing (2011) Flywheels fail at energy project. TimesUnion, Issue October 19th. 2011.

    Google Scholar 

  22. Universal Science (2012) Thermal Conductivity of Materials. http://www.universal-science.com/wp-content/uploads/2012/08/Thermal-conductivity-table.pdf. [Accessed January 8th 2016].

  23. Böhler (2012) Werkzeugstähle Schnellarbeitsstähle. Lieferprorgamm BÖHLER – Stahl für die Besten der Welt, Nr. Issue May 2012 pp. 10–74.

    Google Scholar 

  24. T. Tian (2011) Anisotropic Thermal Property Measurement of Carbon-fiber/Epoxy Composite Materials. University of Nebraska, Lincoln, Nebraska, USA.

    Google Scholar 

  25. A. Dasgupta and R. K. Agarwal (1992) Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique. Journal of Composite Materials, Edition 26, pp. 2736–2758.

    Article  Google Scholar 

  26. R. D. Sweeting (2004) Measurement of thermal conductivity for fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, pp. 933–938.

    Google Scholar 

  27. R. C. Wetherhold and J. Wang (1994) Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites. Journal of Composite Materials, pp. 1491–1498.

    Google Scholar 

  28. A. Storer (2015) What is the maximum temperature stability of carbon fiber composite and glass fiber composite? https://www.quora.com/What-is-the-maximum-temperature-stability-of-carbon-fiber-composite-and-glass-fiber-composite. [Accessed January 8th 2016].

  29. P.E. Mason, K. Atallah and D. Howe (1999) Hard and Soft Magnetic Composites in High Speed Flywheels, ICCM-12 Paris, France.

    Google Scholar 

  30. GKN Hybrid Power (2014) Gyrodrive by GKN Hybrid Power – Driving Efficient Transport, Unit 1 Pentagon South, Abingdon Science Park, Barton Lane, Abingdon, Oxford OX14 3PZ, UK.

    Google Scholar 

  31. L.A. Bisby (2003) Fire behaviour of fibre-reinforced polymer (FRP) reinforced or confined concrete, (Dissertation), Queen’s University, Kingston, Ontario, Canada.

    Google Scholar 

  32. Clean Motion Offensive (2011) Projektinhalt. Clusterland OberAustria GmbH, Hafenstraße 47-51, 4020 Linz, Austria. http://www.cleanmotion.at/index.php?id=19. [Accessed February 20th 2016].

  33. Klima- und Energiefonds (2011) CMO – Clean Motion Offensive. Klima- und Energiefonds, Gumpendorferstr. 5/22, 1060 Wien, Austria. https://www.klimafonds.gv.at/unsere-themen/e-mobilitaet/leuchttuerme/cmo-clean-motion-offensive/. [Accessed February 20th 2016]

  34. VAC – Vacuumschmelze (2013) Weichmagnetische Kobalt-Eisen-Legierungen (Datenblatt VACOFLUX and VACODUR). Vacuumschmelze, Hanau, Germany.

    Google Scholar 

  35. E. Lindsley (1973) Hybrid Car: Part-Time Engine + Part-Time Flywheel = Full-Time Transportation. Popular Science, Issue August 1973.

    Google Scholar 

  36. A. P. Armagnac (1974) Flywheel Brakes Store New Train’s Energy for Electricity-Saving Starts. Popular Science, pp. 70–72, Issue February 1974.

    Google Scholar 

  37. D. Scott (1980) Hydrobus, Gyrobus use brake-generated energy. Popular Science, pp. 76–77, 1980.

    Google Scholar 

  38. D. Scott (1961) Fifth Wheel Runs Bus… Stops it Too! Popular Science, pp. 98–102, Issue May 1961.

    Google Scholar 

  39. R. C. Clerk, J. Adams and J. A. Howell (1970) Flywheel aided power surge. Commercial Motor Archive, 30 October 1970.

    Google Scholar 

  40. W. Novy (2008) Start-Stopp – aber mit Schwung! Kietische Energiespeicher als Alternative zu Akkumulatoren und Kondensatoren. AUTOMOTIVE, pp. 64–66, Issue 11 2008.

    Google Scholar 

  41. P. Dietrich (1999) Gesamtenergetische Bewertung verschiedener Betriebsarten eines Parallel-Hybridantriebes mit Schwungradkomponente und stufenlosem Weitbereichsgetriebe für einen Personenwagen (Dissertation) p. 86. ETH Zürich, Switzerland.

    Google Scholar 

  42. Parry People Movers Ltd. (2009) PPM Technology. Parry People Movers Ltd, Overend Road, Cradley Heath, West Midlands, B64 7DD, UK. http://www.parrypeoplemovers.com/technology.htm. [Accessed August 20th 2016].

  43. H. Schreck (1977) Konzeptuntersuchung Realisierung und Vergleich eines Hybrid-Antriebes mit Schwungrad mit einem konventionellen Antrieb. Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule, Aachen, Germany.

    Google Scholar 

  44. N. N. Gulia, (1986) Der Energiekonserve auf der Spur. Verlag Harri Deutsch, Thun, Germany.

    Google Scholar 

  45. Compact Dynamics (2008) KERS – Energy Recovery System (Version 08). Compact Dynamics, Moosstrasse 9, D-82319 Starnberg, Germany.

    Google Scholar 

  46. B. Schweighofer, M. Recheis, P. Fulmek and H. Wegleiter (2013) Rotor Losses in a Switched Reluctance Motor – Analysis and Reduction Methods. EPJ Web of Conferences, Volume 40, 2013. JEMS 2012 – Joint European Magnetic Symposia. https://doi.org/10.1051/epjconf/20134017008

  47. E. Chiao (2012) Amber Kinetics DOE Peer Review. U.S. Department of Energy, Washington D.C., USA.

    Google Scholar 

  48. Grosschädl Stahl (2016) Lager-Preisliste, Stabstahl 42CrMo4 + QT. Graz, Austria.

    Google Scholar 

  49. Edelstahl Service Schulz (2016) Übersicht über die verarbeiteten Werkstoffe – Nichtrostende Stähle (austenitisch) – Sonderstähle. Edelstahl Service Schulz, Augustenstr. 10 a, 70178 Stuttgart, Germany.

    Google Scholar 

  50. D. Breslavsky (2011) European steel and alloy grades and numbers. National Technical University, KhPI, 21 Frunze Str., Kharkov 61002, Ukraine. http://www.steelnumber.com/en/steel_composition_eu.php?name_id=335. [Accessed July 22nd 2016].

  51. BI-WAT GmbH. – Bad Ischler Wassertechnik und Edelstahldesign (2013) Edelstahl-Information | Chemische Beständigkeit. Marie-Luisenstraße 1A, 4820 Bad Ischl, Austria.

    Google Scholar 

  52. Thyssen Krupp Materials International (2008) Werkstoffblatt TK 34CrMo(S)4 bis 42CrMo(S)4, p.3. Thyssenkrupp AG, Essen, Germany.

    Google Scholar 

  53. A. Buchroithner, I. Andrasec and M. Bader (2012) Optimal system design and ideal application of flywheel energy storage systems for vehicles. 2012 IEEE International Energy Conference and Exhibition (ENERGYCON). Florence, Italy. DOI: https://doi.org/10.1109/EnergyCon.2012.6348295

  54. P. M. Rudeloff (1909) Der Einfluß erhöhter Temperaturen auf die mechanischen Eigenschaften der Metalle. Polytechnisches Journal, Berlin, Germany. http://dingler.culture.hu-berlin.de/article/pj324/ar324182

  55. C. Brummer (2013) Licht hilft beim Formen anspruchsvoller Materialien – Laserunterstütztes Metalldrücken verbessert Formänderungsverhalten hochfester Werkstoffe. Industrieanzeiger Future Trends, Issue 22. April 2013. Konradin-Verlag Robert Kohlhammer GmbH, Leinfelden-Echterdingen, Germany.

    Google Scholar 

  56. Grosschädl Stahl (2016) Lager-Preisliste, Stabstahl 42CrMo4 + QT. Grosschädl Stahl Graz, Südbahnstraße 10, A-8020 Graz, Austria.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buchroithner, A. (2023). Rotors for Mobile Flywheel Energy Storage. In: Flywheel Energy Storage. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-35342-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-35342-1_7

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-35341-4

  • Online ISBN: 978-3-658-35342-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics