Skip to main content

Robots and Robot Controllers

  • 456 Accesses

Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Placement devices and industrial robots belong in the handling devices category. Handling is defined as the creation, defined changing or temporary maintaining of a spatial positioning of geometrically determined bodies within a reference system [VDI90]. In line with this definition, handling devices are devices that move these bodies to certain positions and adjust their orientations. Position and orientation together give the 6-axis position (also called pose) of a body within the space. Handling devices are categorized into manipulators, placement devices, and industrial robots depending on the functional scope of their controllers (Fig. 13.1).

I thank my staff members Christian Fimmers M. Sc., Lukas Gründel M. Sc., Lars Lienenlüke M. Sc. and Simon Storms M. Sc. for their contribution in revising this chapter.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-658-34622-5_13
  • Chapter length: 71 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-658-34622-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10
Fig. 13.11
Fig. 13.12
Fig. 13.13
Fig. 13.14
Fig. 13.15
Fig. 13.16
Fig. 13.17
Fig. 13.18
Fig. 13.19
Fig. 13.20
Fig. 13.21
Fig. 13.22
Fig. 13.23
Fig. 13.24
Fig. 13.25
Fig. 13.26
Fig. 13.27
Fig. 13.28
Fig. 13.29
Fig. 13.30
Fig. 13.31
Fig. 13.32
Fig. 13.33
Fig. 13.34
Fig. 13.35
Fig. 13.36
Fig. 13.37
Fig. 13.38
Fig. 13.39
Fig. 13.40
Fig. 13.41
Fig. 13.42
Fig. 13.43
Fig. 13.44
Fig. 13.45
Fig. 13.46
Fig. 13.47
Fig. 13.48
Fig. 13.49
Fig. 13.50
Fig. 13.51
Fig. 13.52
Fig. 13.53
Fig. 13.54
Fig. 13.55
Fig. 13.56
Fig. 13.57
Fig. 13.58
Fig. 13.59
Fig. 13.60
Fig. 13.61
Fig. 13.62
Fig. 13.63
Fig. 13.64
Fig. 13.65
Fig. 13.66
Fig. 13.67
Fig. 13.68
Fig. 13.69
Fig. 13.70
Fig. 13.71
Fig. 13.72
Fig. 13.73
Fig. 13.74
Fig. 13.75
Fig. 13.76
Fig. 13.77
Fig. 13.78
Fig. 13.79
Fig. 13.80
Fig. 13.81
Fig. 13.82

References

  1. Armbruster, H., Kirner, E., Kinkel, S.: Neue Kundengruppen für Industrieroboter. Fraunhofer ISI, Karlsruhe (2006)

    Google Scholar 

  2. Bischoff, R., Guhl, T.: Robotic visions to 2020 and beyond. Vortrag, Brüssel (2009)

    Google Scholar 

  3. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schaeffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, A., Grunwald, G., Hirzinger, G.: The KUKA-DLR lightweight robot arm – a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), S. 1–8

    Google Scholar 

  4. Blume, C., Dillmann, R.: Frei programmierbare Manipulatoren. Vogel, Würzburg (1981)

    Google Scholar 

  5. Brecher, C., Göbel, M.: Modellbasierte Programmierung “by Demonstration.” Automatisierungstechnische Praxis 7, 62–68 (2009)

    CrossRef  Google Scholar 

  6. Brecher, C., Roßmann, J., Schlette, C., Herfs, W., Ruf, H., Göbel, M.: Intuitive Roboterprogrammierung in der automatisierten Montage. wt – Werkstattstechnik online 100(9), 684–686 (2010)

    Google Scholar 

  7. Bronstein, I.N., Semendjajew, K.A.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt a. M. (1984)

    MATH  Google Scholar 

  8. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22(2), 215–221 (1995)

    MathSciNet  MATH  Google Scholar 

  9. DIN Deutsches Institut für Normung e. V.; Programmiersprache – lndustrial Robot Language (IRL) September (1996)

    Google Scholar 

  10. Drews, P., Schmid, D., Volkholz, V.: Roboter in der Werkstatt. Maschinenbau Verlag, Frankfurt a. M. (1997)

    Google Scholar 

  11. Ferré, E., Laumond, J.-P., Arechavaleta, G., Estevès, C.: Progresses in assembly path planning. Int. Conf. Prod. Lifecycle Manage., 373–382. https://www.inderscience.com/inorders/bkpage.php?rec_id=33&journalID=1001&chapNum=7. (ISBN 0-907776-18-3 (Print), ISBN 0-907776-19-1 (Online))

  12. Gecks, T.: Sensorbasierte, echtzeitfähige Online-Bahnplanung für die Mensch-Roboter-Koexistenz. DissertationUniversität Bayreuth (2011)

    Google Scholar 

  13. Göbel, M.: Verfahren zur intuitiven Programmierung von Industrierobotern durch Demonstration. Werkzeugmaschinen, Bd. 12, 1. Aufl. Apprimus-Verl, Aachen (2012)

    Google Scholar 

  14. Gruninger, R.; Kus, E.; Huppi, R.: Market study on adaptive robots for flexible manufacturing systems. 2009 IEEE International Conference on Mechatronics, S. 1–7 (2009)

    Google Scholar 

  15. Guizzo, E.: Article robotics industrial robots the rise of the machines. http://spectrum.ieee.org/robotics/industrial-robots/the-rise-of-the-machines. Accessed 14. Sept. 2017

  16. Hartenberg, R.S.: Die Darstellung und Handhabung der niederen Elementenpaare in einer auf Matrizenrechnung gegründeten Zeichensprache. VDI 12, 145–155 (1956)

    Google Scholar 

  17. Hesse, S.: Robotergreifer. Funktion, Gestaltung und Anwendung industrieller Greiftechnik. Hanser, München (2004)

    Google Scholar 

  18. Jacobi, A. N.: Realistische Simulation der BewegungenIPK Berlin (1994)

    Google Scholar 

  19. Jensen, L., Stephan, J.: Gefriergreifer: Neue Anwendung der Peltier-Technik. KI. Luft-und Kältetechnik 38(12), 572–576 (2002)

    Google Scholar 

  20. Kuhn, S., Henrich, D.: Multi-View Reconstruction of Unknown Objects in the Presence of Known Occlusions. DissUniversität Bayreuth (2009)

    Google Scholar 

  21. Kuka Roboter GmbH: KUKA.PLC mxA. http://www.kuka-robotics.com/res/sps/a737ee03-5832-4c95-9d91-84e0de80c664_KUKA_mxAUTOMATION_DEUTSCH.pdf. Accessed 26. Jan. 2015

  22. Mckerrow, P. J.: Introduction to robotics. Electronic systems engineering series. Repr. Aufl. Addison-Wesley Pub. Co, Sydney (1998)

    Google Scholar 

  23. Meyer, C., Hollmann, R., Parlitz, C., Hägele, M.: Programmieren durch Vormachen für Assistenzsysteme – Schweiß- und Klebebahnen intuitiv programmieren (Programming by Demonstration for Assistive Systems – Intuitive Programming of Welding and Gluing Trajectories). it - Information Technology 49(4), 238–246 (2007)

    CrossRef  Google Scholar 

  24. Osterwinter, M.: Steuerungsorientierte Robotersimulation. Vieweg, Wiesbaden (1992)

    CrossRef  Google Scholar 

  25. Paul, R.P.: Robot manipulators, mathematics, programming and control. MIT Press, Cambridge (1981)

    Google Scholar 

  26. Pritschow, G., Frager, O.: Roboterzellen Programmierung: Die Sprache IRL und der Zwischencode ICR. Robotersysteme 8, 25–32 (1992)

    Google Scholar 

  27. Rieseler, H.: Roboterkinematik – Grundlagen, Invertierung und symbolische Berechnung. Vieweg, Wiesbaden (1992)

    CrossRef  Google Scholar 

  28. Sayler, S.: Universelle Manipulationsstrategien für die industrielle Montage. KIT Scientific Publ, Karlsruhe (2011)

    Google Scholar 

  29. Schwarz, M.H., Boercsoek, J.: A survey on OLE for Process Control (OPC). In: Proceedings of the 7th Conference on 7th WSEAS International Conference on Applied Computer Science, Vol. 7. Reihe: ACS’07, S. 186–191

    Google Scholar 

  30. Snyder, W.E.: Computergesteuerte Industrieroboter. Grundlagen und Einsatz. VCH-Verlagsges, Weinheim (1990)

    Google Scholar 

  31. Suppa, M.: Autonomous robot work cell exploration using multisensory eye-in-hand systems. DissertationUniversität Hannover (2008)

    Google Scholar 

  32. Richtlinie VDI 2860: Montage- und Handhabungstechnik; Handhabungsfunktionen, Handhabungseinrichtungen; Begriffe, Definitionen, Symbole (1990)

    Google Scholar 

  33. Richtlinie VDI 2740: Mechanische Einrichtungen in der Automatisierungstechnik - Greifer für Handhabungsgeräte und Industrieroboter (1995)

    Google Scholar 

  34. Warnecke, H.-J., Schraft, R.D.: Handbuch Handhabungs- Montage- und Industrierobotertechnik. Verlag Moderne Industrie, Landsberg am Lech (1989)

    Google Scholar 

  35. Warnecke, H.-J., Schraft, R.D.: Handbuch Handhabungs- Montage- und Industrierobotertechnik-Erweiterungsblätter. Verlag Moderne Industrie, Landsberg am Lech (1997)

    Google Scholar 

  36. Weck, M., Dammertz, R.: Graphical robot programming and generation of application specific programming interfaces. Ann. WGP 1(4), 87f. (1997)

    Google Scholar 

  37. Wiest, U.: Kinematische Kalibrierung von Industrierobotern. Berichte aus der Automatisierungstechnik. Shaker, Aachen (2001)

    Google Scholar 

  38. Wilson, M.: Festo drives automation forwards. Assem. Autom. 31(1), 12–16 (2011)

    CrossRef  Google Scholar 

  39. Zaidan, S.: A work-piece based approach for programming cooperating industrial robots. Forschungsberichte IWB, Bd. 259. Utz, München (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brecher .

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Brecher, C., Weck, M. (2022). Robots and Robot Controllers. In: Machine Tools Production Systems 3. Lecture Notes in Production Engineering. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-34622-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-34622-5_13

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-34621-8

  • Online ISBN: 978-3-658-34622-5

  • eBook Packages: EngineeringEngineering (R0)