Skip to main content

Advanced Recycling

  • Chapter
  • First Online:
Recycling of Building Materials
  • 894 Accesses

Abstract

Since the beginning of “modern” recycling in the early 1980s, there have been attempts to improve the recycling rates and the quality as well as the level of products. In processing technology, this mainly concerns the crushing process and the sorting technology. On the product side, solutions are being sought for previously non-recyclable materials, in order to make landfilling superfluous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schenk, K. J.: Separating Device. Patent WO/2011/142663. PCT/NL 2011/050314. Pub. Date 17.11.2011.

    Google Scholar 

  2. Yanagibashi, K.; Yonezawa, T.; Arakawa, K.; Yamda, M.: A new concrete recycling for coarse aggregate regeneration process. Proceedings of the International Conference “Sustainable Concrete Construction”, pp. 511–522. Dundee 2002.

    Google Scholar 

  3. Florea, M.V.A.: Secondary materials in cement-based products. Dissertation. Eindhoven University of Technology. Eindhoven 2014.

    Google Scholar 

  4. Ning, Z.: Thermal treatment of recycled concrete fines. Master Thesis. Eindhoven University of Technology. Eindhoven 2012.

    Google Scholar 

  5. Chromá, M.; Rovnaník, P.; Vořechovská, D.; Bayer, P.; Rovnaníková, P.: Concrete Rehydration after Heating to Temperatures of up to 1200 °C. XII DBMC, International Conference on Durability of Building Materials and Components. Porto 2011.

    Google Scholar 

  6. Sui, Y.: Untersuchungen zu den Einflussgrößen der thermisch-mechanischen Behandlung für das Recycling von Altbeton sowie Charakterisierung der entstehenden Produkte. Dissertation. Bauhaus-Universität Weimar 2010.

    Google Scholar 

  7. Larbi, J.A.; Heijnen, W.M.M.; Brouwer, J.P.; Mulder, E.: Preliminary laboratory inverstigations of thermally treated recycled concrete aggregate for general use in concrete. Waste Materials in Construction Wascon 2000. Proceedings of the International Conference on the Science and Engineering of Recycling for Environmental Protection, pp 129–139. Harrogate 2000.

    Google Scholar 

  8. Mulder, E.; Blaakmeer, J.; Nijland, T.; Tamboer, L.: Closed Material Cycle for Concrete as a Part of an Intergrated Process for the Reuse of the Total Flow of C&D Waste. Proceedings of the International Conference “Sustainable Concrete Construction”, pp. 555–562. Dundee 2002.

    Google Scholar 

  9. Shima, H.; Tateyashiki, H.; Matsuhashi, R.; Yoshida, Y.: An Advanced Concrete Recycling Technology and its Applicability Assessment through Input-Output Analysis. Journal of Advanced Concrete Technology Vol. 3, 2015, No. 1, pp. 53–67.

    Google Scholar 

  10. Yasumichi Koshiro; Kenichi Ichise: Application of entire concrete waste reuse model to produce recycled aggregate class H. Construction and Building Materials Vol. 67, 2014, pp. 308–314.

    Google Scholar 

  11. Kalinowska-Wichrowska, K.; Pawluczuk, E.; Bołtryk, M.: Waste-free technology for recycling concrete rubble. Construction and Building Materials Vol. 234, 2020, Article 117407.

    Google Scholar 

  12. Splittgerber, F.: Identifizierung der Zementart in Zementsteinen und die Übertragbarkeit auf Mörtel und Betone. Dissertation. Bauhaus-Universität Weimar 2011.

    Google Scholar 

  13. Splittgerber, F.; Mueller, A.: Inversion of the Cement Hydration as a new method for Identification and/or Recycling? 11th International Congress on the Chemistry of Cement. Durban 2003.

    Google Scholar 

  14. Alonso, C.; Fernandez, L.: Dehydration and rehydration processes of cement paste exposed to high temperature environments. Journal of Materials Science Vol. 39, 2004, pp. 3015–3024.

    Article  Google Scholar 

  15. Cyr, M.; Lawrence, P.; Ringot, E.: Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research Vol. 36, 2006, pp. 264–277.

    Article  Google Scholar 

  16. Angulo, S.C.; Guilge, M.S.; Quarcioni, V.A.; Baldusco, R.; Cincotto, M.A.: Rehydratation of cement fines: A TG/Calorimetry study. Proceedings of the III. RILEM Conference “Progress of Recycling in the Built Environment”. São Paulo 2015.

    Google Scholar 

  17. Zinovyev, N.T.; Siomkin, B.V.; Tanbayev, Zh.G.: On concrete demolition by electric discharges. Proceedings of the Second International Symposium held by RILEM, pp. 300–306. Tokyo 1988.

    Google Scholar 

  18. Patent DE 195 34 232 C 2: Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper. Forschungszentrum Karlsruhe GmbH. Anmeldung am 15.09.1995, Offenlegung am 20.03.1997.

    Google Scholar 

  19. Fujlta, T.; Yoshimi I.; Shibayama, A.; Miyazaki, T; Abe; K.; Sato, M.; Tai Yen, W.; Svoboda, J.: Crushing and liberation of Materials by Electrical Disintegration. European Journal of Mineral Processing and Environmental Protection Vol.1, 2001, No. 2, pp. 113–122.

    Google Scholar 

  20. Namihira, T.; Iizasa, S.; Shigeishi, M.; Akiyama, H. et al.: Evaluation of concrete made from recycled coarse aggregates by pulsed power discharge. Conference Paper. DOI: https://doi.org/10.1109/PPPS.2007.4651948 Source: IEEE Xplore, July 2007.

  21. Inoue, S.; Iizasa, S.; Wang, D.; Namihira, T.; Shigeishi, M.; Ohtsu, M.; Akiyama, H.: Concrete recycling by pulsed power discharge inside concrete. International Journal of Plasma Environmental Science & Technology Vol.6, 2012, No.2, pp 183–188.

    Google Scholar 

  22. Linß, E.; Mueller, A.: High performance sonic impulses – an alternative method for processing of concrete. International Journal of Mineral Processing Vol. 74, 2004, pp. 199–208.

    Article  Google Scholar 

  23. Linß, E.: Untersuchungen zur Leistungsschallimpulszerkleinerung für die selektive Aufbereitung von Beton. Dissertation. Bauhaus-Universität Weimar 2008.

    Google Scholar 

  24. Menard, Y.; Bru, K.; Touzé, S.; Lemoign, A.; Poirier; J.E.; Ruffie, G; Bonnaudin, F.; Von Der Weid, F.: Innovative process routes for a high-quality concrete recycling. Waste Management Vol. 33, 2013, No. 6, pp. 1561–1565.

    Google Scholar 

  25. Thome, V.: Recycling waste concrete with lightning bolts. AWE International, 013, June, pp. 18–25.

    Google Scholar 

  26. Arifi; E.; Ishimatsu, K.; Iizasa, S.; Namihira, T.; Sakamoto, H.; Tachi, Y.: Reduction of contaminated concrete waste by recycling aggregate with the aid of pulsed power discharge. Construction and Building Materials Vol. 67, 2014, pp. 192–196.

    Google Scholar 

  27. Uenishi, K.; Yamachi, H.; Yamagami, K.; Sakamoto, R.: Dynamic fragmentation of concrete using electric discharge impulses. Construction and Building Materials Vol. 67, 2014, pp. 170–179.

    Article  Google Scholar 

  28. Dittrich, S.; Thome, V.; Seifert, S.; Höhn, A.-L.: Verwertungspotential von elektro-dynamisch aufbereitetem Altbeton. www.vivis.de/phocadownload/Download/2015.../2015_MNA_631-638_Dittrich.pdf.

  29. Bru, K.; Touzé, S.; Parvaz, D., P.: Development of an innovative process for the up-cycling of concrete waste. International HISER Conference on Advances in Recycling and Management of Construction and Demolition Waste. Delft 2017.

    Google Scholar 

  30. Yasunaka, H. Iwasaki, Y.; Matsutani, K.; Yamate, T.; Shibamoto, M.; Hatakeyama, M.; Momma, T.; Tachikawa, E.: Microwave irradiation technology for contaminated concrete surface removal. Proceedings of the Second International Symposium held by RILEM, pp. 280–289. Tokyo 1988.

    Google Scholar 

  31. Akbarnezhad, A.: Microwave Assisted Production of Aggregates from Demolition Debris. Thesis. Submitted for the Degree of Doctor of Philosophy. Department of Civil Engineering National University of Singapore 2010.

    Google Scholar 

  32. Akbarnezhad, A.; Ong, K. C. G.; Zhang, M. H.; Tam, C. T.; Foo, T. W. J.: Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials Vol. 25, 2011, pp. 3469–3479.

    Article  Google Scholar 

  33. Lippiatt, N.: Investigation of fracture porosity as the basis for developing a concrete recycling process using microwave heating. Thesis. L’Universitè de Toulouse 2014.

    Google Scholar 

  34. Bru, K.; Touze, S.; Bourgeois, F.; Lippiatt, N.; Menard, Y.: Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste. International Journal of Mineral Processing Vol. 126, 2014, pp. 90–98.

    Article  Google Scholar 

  35. Noguchi, T.: Advanced Technologies of Concrete Recycling in Japan. International Rilem Conference on Progress of Recycling in the Built Environment. São Paulo 2009.

    Google Scholar 

  36. Heesup Choi; Myungkwan Lim; Hyeonggil Choi; Ryoma Kitagaki; Takafumi Noguchi: Using Microwave Heating to Completely Recycle Concrete. Journal of Environmental Protection 2014, No. 5, pp. 583–596. https://doi.org/10.4236/jep.2014.57060.

  37. Liebezeit, S.; Müller, A.; Leydolph, B.; Palzer,U.: Mikrowelleninduziertes Grenzflächenversagen zur Trennung von Materialverbunden. www.vivis.de/phocadownload/2016_mna/2016_MNA_465-480_Liebezeit.pdf.

  38. Liebezeit, S.; Mueller, A.; Leydolph, B.; Palzer,U.: Microwave-induced interfacial failure to enable debonding of composite materials for recycling. Sustainable Materials and Technologies Vol. 14, 2017, pp. 29–36.

    Article  Google Scholar 

  39. Jaecheol Ahn: Microwave dielectric heating to disassemble a modified cementitious joint. Materials and Structures 2013, No. 46, pp. 2077–2090.

    Article  Google Scholar 

  40. Wafaa Mohamed Shaban, Jian Yang, Haolin Su, Kim Hung Mo, Lijuan Li, Jianhe Xie: Quality Improvement Techniques for Recycled Concrete Aggregate: A review. Journal of Advanced Concrete Technology Vol. 17, 151–167, April 2019.

    Google Scholar 

  41. Jiangang Wang, Jinxi Zhang, Dandan Cao, Haixiao Dang, Bo Ding: Comparison of recycled aggregate treatment methods on the performance for recycled concrete. Construction and Building Materials Vol. 234, 2020, Feb., 117366.

    Google Scholar 

  42. Quattrone, M.; Angulo, S., C.; John, V.,M.: Energy and CO2 from high performance recycled aggregate production. Resources, Conservation and Recycling Vol. 90, 2014, pp. 21–33.

    Google Scholar 

  43. http://zenrobotics.com/de/

  44. Pretz, T.; Julius, J.: Stand der Technik und Entwicklung bei der berührungslosen Sortierung von Abfällen. Österreichische Wasser- und Abfallwirtschaft, 2008, Heft 07–08, S. 105–112.

    Google Scholar 

  45. Angulo, S.C.; John, V. M.; Ulsen, C.; Kahn, H.; Mueller, A.: Optical sorting of ceramic material from mixed construction and demolition waste aggregates (in Portugisisch). Ambiente Construído 2013, No. 6, pp. 61–73.

    Article  Google Scholar 

  46. Linß, E.: Sensorgestützte Sortierung von mineralischen Bau- und Abbruchabfällen. Fachtagung Recycling R’16. Weimar 2016.

    Google Scholar 

  47. Somayeh Lotfi: C2CA Concrete Recycling Process. From Development To Demonstration. Thesis. Technische Universiteit Delft 2016.

    Google Scholar 

  48. Tamura, M.; Takafumi Noguchi: Concrete design toward complete recycling. Structural Concrete 2001, January, pp. 155–167.

    Google Scholar 

  49. Riley, Ch.M.: Relation of Chemical Properties to the Bloating of Clays. Journal of Am. Ceram. Soc. Vol. 34, 1951, pp. 123–128.

    Article  Google Scholar 

  50. White, W.A.: Lightweight aggregate from Illinois shale. Illinois Geol. Surv.Circ. No 290, 29 p, 1960.

    Google Scholar 

  51. Lampl, C.: Sekundärrohstoffe – Anforderungen und Einsatzgebiete für die Baustoffe der Zukunft. Nachhaltige Nutzung von Baurestmassen. Österreichischer Wasser- und Abfallwirtschaftsverband. Wien 2009.

    Google Scholar 

  52. Winkler, A.: Herstellung von Baustoffen aus Baurestmassen. Shaker Verlag Aachen 2001.

    Google Scholar 

  53. O’Farrell, M.; Sabir, B. B.; Wild, S.: Resistance to chemical attack of ground brick-PC mortar. Part I. Sodium sulphate solution. Cement and Concrete Research Vol. 29, 1999, pp. 1781–1790.

    Google Scholar 

  54. O’Farrell, M.; Sabir, B. B.; Wild, S.: Resistance to chemical attack of ground brick-PC mortar. Part II. Synthetic seawater. Cement and Concrete Research Vol. 30, 2000, pp. 757–765.

    Google Scholar 

  55. O’Farrell, M.; Sabir, B. B.; Wild, S.: Pore size distribution and compressive strength of waste clay brick mortar. Cement & Concrete Composites. Vol. 23, 2001, pp. 81–91.

    Article  Google Scholar 

  56. Toledo Filho, R. D.; Gonçalves, J. P.; Americano, B., B.; Fairbairn, E., M.: Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research Vol. 37, 2007, pp. 1357–1365.

    Google Scholar 

  57. Kae-Long Lin et al.: Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research 2009, pp. 1–6.

    Google Scholar 

  58. Vejmelkova, E. et al.: Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cement & Concrete Composites Vol. 34, 2012, pp. 55–61.

    Article  Google Scholar 

  59. Kartini, K.; Rohaidah, M.; N., Zuraini, Z. A.: Performance of Ground Clay Bricks as Partial Cement Replacement in Grade 30 Concrete. Open Science Index, Civil and Environmental Engineering Vol. 6, 2012, No 8 waset.org/Publication/2626.

    Google Scholar 

  60. Bignozzi, M. C.; Saccani, A.: Ceramic waste as aggregate and supplementary cementing material: A combined action to contrast alkali silica reaction (ASR). Cement & Concrete Composites Vol. 34, 2012, pp. 1141–1148.

    Article  Google Scholar 

  61. Heidari, A.; Tavakoli, D.: A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles. Construction and Building Materials Vol. 38, 2013, pp. 255–264.

    Article  Google Scholar 

  62. Cheng Yunhong et al.: Test research on effects of ceramic polishing powder on carbonation and sulphate-corrosion resistance of concrete. Construction and Building Materials Vol. 55, 2014, pp. 440–446.

    Article  Google Scholar 

  63. Steiner, L. R.; Bernardin, A. M.; Pelisser, F.: Effectiveness of ceramic tile polishing residues as supplementary cementitious materials for cement mortars. Sustainable Materials and Technologies Vol. 4, 2015, 30–35.

    Article  Google Scholar 

  64. Kadam, S. D. et al.: Analysis of Ground Clay Brick as Supplementary Cementitious Material. International Journal of Scientific & Engineering Research Vol.6, 2015, Issue 12, pp.152–157.

    Google Scholar 

  65. Irki, I. et al. 2017: Effect of Blaine fineness of recycling brick powder replacing cementitious materials in self compacting mortar. Journal of Adhesion Science and Technology 2017, pp.1–19.

    Google Scholar 

  66. Alesio, E. et al.: Use of clay-based construction and demolition waste as additions in the design of new low and very low heat of hydration cements. Materials and Structures Vol. 51, 2018, pp. 1–12.

    Article  Google Scholar 

  67. Letelier et al.: Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete. Sustainability 2018, 10, 1037, 1–16.

    Google Scholar 

  68. Rahhal, V. F. et al.: A. Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System. Materials 2019, 12, 1650, 1–20.

    Google Scholar 

  69. Zhiming Ma; Zhenhua Duan; Guangzhong Ba: Effects of an applied load on the chloride penetration of concrete with recycled aggregates and recycled powder. Advances in Civil Engineering Vol. 2019, Article ID 1340803, 1–15.

    Google Scholar 

  70. Yasong Zhao et al.: The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. Journal of Cleaner Production 242, 2020 118521, 2–10.

    Google Scholar 

  71. Beutner, N.: Zur Eignung und Wirkungsweise calcinierter Tone als reaktive Bindemittelkomponente im Zement. Dissertation. Universität der Bundeswehr München 2017.

    Google Scholar 

  72. Mueller, A.; Lipowsky, A.; Palzer, U.: Brick powders as pozzolanic additives in cement production. Zement Kalk Gips 2020, Heft 7–8, S.38–45.

    Google Scholar 

  73. Mueller, A.: Bedeutung von Kornform und Korngröße für die Herstellung von Betonen und das Recycling von Baustoffen. 16. Internationale Baustofftagung Ibausil. Tagungsbericht Band 2. Weimar 2006.

    Google Scholar 

  74. Wienke, L.; Lander, S., Stark, U.; Mueller, A.: Untersuchungen zur Mahlung von Rohstoffen, Abfällen und Zwischenprodukten in einer kleintechnischen Anlage. ZKG INTERNATIONAL Vol. 55, 2002, 8, pp.39–48.

    Google Scholar 

  75. Severins, K.; Müller, Ch.: R-Beton – Ressourcen schonender Beton (Teil 2). Verwendung von Brechsanden in der Zementherstellung. 20. Internationale Baustofftagung 12.–14. September 2018, Weimar.

    Google Scholar 

  76. Domínguez, A.; Domínguez, M.I.; Ivanova,S.; Centeno, M.A.; Odriozola, J.A.: Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceramics International Vol. 42, 2016, pp.15217–15223.

    Article  Google Scholar 

  77. Dondi, M.; Cappelletti, P.; D’Amore, M.; de Gennaro;R.; Graziano, S.F.; Langella, A.; Raimondo, M.; Zanelli, C.: Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Construction and Building Materials Vol.127, 2016, pp.394–409.

    Google Scholar 

  78. Mueller, A.; Schnell, A.; Ruebner, K.: The manufacture of lightweight aggregates from recycled masonry rubble. Construction and Building Materials Vol. 98, 2015, 376–387.

    Article  Google Scholar 

  79. Lim, J.; Lütkehölter, H.: Die Trümmerverwertungsanlage Frankfurt am Main. Leistungsnachweises im Ingenieurprojekt. Fachhochschule Potsdam, Januar 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Müller .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, A., Martins, I. (2022). Advanced Recycling. In: Recycling of Building Materials. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-34609-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-34609-6_10

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-34608-9

  • Online ISBN: 978-3-658-34609-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics