Skip to main content

Algorithmen und Dateiformate für die additive Fertigung

  • Chapter
  • First Online:
Sharing Economy in der Industrie
  • 4628 Accesses

Zusammenfassung

Die additive Fertigung hat sich in den letzten Jahren technologisch stark weiterentwickelt, indem immer bessere Fertigungsverfahren realisiert wurden. Um aber das volle Potential der Technologie ausnutzen zu können, wurde auch der vorgelagerte digitale Prozess stetig verbessert. In diesem Kapitel wird dieser näher betrachtet. Dazu werden die Möglichkeiten der Designerstellung betrachtet sowie die Mechanismen des Slicing. Zusätzlich warden Dateiformate, die in der additiven Fertigung zum Einsatz kommen, genauer betrachtet sowie deren Vor- und Nachteile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Autodesk (2021). AutoCAD für Mac und Windows | 2D/3D-CAD-Software | Autodesk. https://www.autodesk.de/products/autocad/overview?term=1-YEAR&support=null. Zugegriffen am 06.03.2021.

  • Brown, A. C. und De Beer, D. (2013). Development of a Stereolithography (STL) Slicing and G-code Generation Algorithm for an Entry Level 3-D Printer. In 2013 Africon. IEEE.

    Google Scholar 

  • Ding, D., Pan, Z., Cuiuri, D., Li, H., Larkin, N., und van Duin, S. (2016a). Automatic Multi-Direction Slicing Algorithms for Wire Based Additive Manufacturing. Robotics and Computer-Integrated Manufacturing, 37:139–150.

    Google Scholar 

  • Ding, D., Pan, Z., Cuiuri, D., Li, H., und van Duin, S. (2016b). Advanced Design forAdditive Manufacturing: 3D Slicing and 2D Path Planning. New Trends in 3D Printing, Seiten 1–23.

    Google Scholar 

  • Ebert, M., Subramanian, S. G., Akleman, E., und Krishnamurthy, V. R. (2020). Generative Infills for Additive Manufacturing Using Space-Filling Polygonal Tiles. In Volume 11B: 46th Design Automation Conference (DAC). American Society of Mechanical Engineers.

    Google Scholar 

  • Fastermann, P. (2016a). 3D-Scannen wird immer einfacher, Seiten 83–95. Springer, Berlin, Heidelberg.

    Google Scholar 

  • Fastermann, P. (2016b). Welche 3D-Druck-Technologien gibt es und welche Technologie eignet sich wofür? In 3D-Drucken, Seiten 27–47. Springer.

    Google Scholar 

  • Feldmann, C. und Gorj, A. (2017). Grundlagen zu 3D-Druck, Produktionssystemen und Lean Production. In 3D-Druck und Lean Production, Seiten 17–75. Springer.

    Google Scholar 

  • Gebisa, A. W. und Lemu, H. G. (2017). A Case Study on Topology Optimized Design for Additive Manufacturing. In IOP Conference Series: Materials Science and Engineering, Band 276, Seite 012026. IOP Publishing.

    Google Scholar 

  • Gibson, I., Rosen, D., Stucker, B., und Khorasani, M. (2021). Design for Additive Manufacturing. In Additive Manufacturing Technologies, Seiten 555–607. Springer.

    Google Scholar 

  • Hildebrand, K., Bickel, B., und Alexa, M. (2013). Orthogonal Slicing for Additive Manufacturing. Computers & Graphics, 37(6):669–675.

    Google Scholar 

  • Hiller, J. D. und Lipson, H. (2009). STL 2.0: A Proposal for a Universal Multi-material Additive Manufacturing File Format. In Proceedings of the Solid Freeform Fabrication Symposium, Band 3, Seiten 266–278.

    Google Scholar 

  • Horvath, J. und Cameron, R. (2015). Slicing a 3D Model. In 3D Printing with MatterControl, Seiten 49–69. Springer.

    Google Scholar 

  • Hussain, M., Okada, Y., und Niijima, K. (2004). Efficient and Feature-preserving Triangular Mesh Decimation. UNION Agency.

    Google Scholar 

  • Pratt, M. J. u a. (2001). Introduction to ISO 10303 – The STEP Standard for Product Data Exchange. Journal of Computing and Information Science in Engineering, 1(1):102–103.

    Google Scholar 

  • Reichinger, A. (2012). Inside the Stratasys Dimension Catalyst Cmb File Format. https://azttm.wordpress.com/2012/09/22/inside-the-stratasys-dimension-catalystcmb-file-format/. Zugegriffen am 02.02.2021.

  • Systemes, D. (2021a). 3D-CAD-Konstruktionssoftware | SOLIDWORKS. https://www.solidworks.com/de. Zugegriffen am 06.03.2021.

  • Systemes, D. (2021b). Konstruktion | CATIA – Dassault Systèmes. https://www.3ds.com/de/produkte-und-services/catia. Zugegriffen am 06.03.2021.

  • Tinkercad (2021). Tinkercad | Create 3D Digital Designs with Online CAD. https://www.tinkercad.com. Zugegriffen am 06.03.2021.

  • Tyflopoulos, E., Tollnes, F. D., Steinert, M., Olsen, A., u a. (2018). State of the Art of Generative Design and Topology Optimization and Potential Research Needs. DS 91: Proceedings of NordDesign 2018, Linköping, Sweden, 14th-17th August 2018.

    Google Scholar 

  • Wardhani, R. und Xu, X. (2016). Model-based Manufacturing Based on STEP AP242. In 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Seiten 1–5.

    Google Scholar 

  • Wong, K. V. und Hernandez, A. (2012). A Review of Additive Manufacturing. International Scholarly Research Notices, 2012.

    Google Scholar 

  • Zhang, Y.,Wang, Z., Zhang, Y., Gomes, S., und Bernard, A. (2020). Bio-inspired Generative Design for Support Structure Generation and Optimization in Additive Manufacturing (AM). CIRP Annals, 69(1):117–120.

    Google Scholar 

  • Zhao, G., Ma, G., Feng, J., und Xiao, W. (2018). Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing. The International Journal of Advanced Manufacturing Technology, 96(9-12):3149–3159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hofmann, A. (2021). Algorithmen und Dateiformate für die additive Fertigung. In: Winkelmann, A., Flath, C., Thiesse, F. (eds) Sharing Economy in der Industrie. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-33923-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-33923-4_7

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-33922-7

  • Online ISBN: 978-3-658-33923-4

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics