Skip to main content

Künstliche Intelligenz in der Radiologie und Strahlentherapie aus der Perspektive von Ärzten und Medizinphysikexperten – Eine Interviewstudie

  • 8377 Accesses

Zusammenfassung

Die Radiologie gilt als einer der vielversprechendsten Bereiche zur Anwendung von Künstlicher Intelligenz (KI). Trotz zahlreicher Entwicklungen in diesem Bereich wird die Sichtweise der Anwender auf die neuen Technologien in der Forschung kaum betrachtet. Ein Verständnis über die Nutzungsbereitschaft potenzieller Anwender von KI ist für eine erfolgreiche Implementierung notwendig. In diesem Beitrag wird zunächst auf die Eignung der medizinischen Fachbereiche Radiologie und Strahlentherapie für den Einsatz von KI eingegangen. Darüber hinaus werden Teilergebnisse einer qualitativen Interviewstudie mit Ärzten und Medizinphysikexperten aus der Radiologie und Strahlentherapie vorgestellt. Das Ziel des Beitrags liegt in der Darstellung der Sichtweise von Klinikern auf KI und der Ableitung daraus resultierender Implikationen für die Praxis, um eine erfolgreiche Integration vielversprechender Technologien zu ermöglichen.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-658-33597-7_29
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-658-33597-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Abb. 29.1

(Quelle: Eigene Darstellung 2021)

Abb. 29.2

(Quelle: Eigene Darstellung 2021)

Abb. 29.3

(Quelle: Eigene Darstellung 2021)

Literatur

  • BÄK. (2018). Berufstätige Ärztinnen und Ärzte nach Arztgruppen zum 31.12.2018, Bundesärztekammer (BÄK, Hrsg.). https://www.bundesaerztekammer.de/ueber-uns/aerztestatistik/aerztestatistik-2018/berufstaetige-aerzte/. Zugegriffen: 25. März 2020.

  • Bashshur, R. L., Krupinski, E. A., Thrall, J. H., & Bashshur, N. (2016). The empirical foundations of teleradiology and related applications: A review of the evidence. Telemedicine journal and e-health: The official journal of the American Telemedicine Association, 22(11), 868–898. https://doi.org/10.1089/tmj.2016.0149

    CrossRef  Google Scholar 

  • Becker, A. S., Marcon, M., Ghafoor, S., Wurnig, M. C., Frauenfelder, T., & Boss, A. (2017). Deep learning in mammography: Diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investigative radiology, 52(7), 434–440. https://doi.org/10.1097/RLI.0000000000000358

    CrossRef  Google Scholar 

  • Buck, C. Hennrich, J., & Kauffmann, A.-L. (2021). Artificial Intelligence in Radiology – A Qualitative Study on Medical Imaging Specialists’ Perspectives. Proceedings of the 42th International Conference on Information Systems (ICIS).

    Google Scholar 

  • Burns, J. E., Yao, J., & Summers, R. M. (2017). Vertebral body compression fractures and bone density: Automated detection and classification on CT images. Radiology, 284(7), 788–797. https://doi.org/10.1148/radiol.2017162100

    CrossRef  Google Scholar 

  • Chang, P. J. (2019). With a little help from machine learning, precision radiology can be feasible. Radiology, 290(3), 680–681. https://doi.org/10.1148/radiol.2018182557

    CrossRef  Google Scholar 

  • Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., Kadoury, S., & Tang, A. (2017). Deep learning: A primer for radiologists. Radiographics: a review publication of the Radiological Society of North America, Inc, 37(7), 2113–2131. https://doi.org/10.1148/rg.2017170077.

  • Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., Huang, C.-S., Shen, D., & Chen, C.-M. (2016). Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific reports, 6(1), 24454. https://doi.org/10.1038/srep24454

    CrossRef  Google Scholar 

  • Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., Mahajan, V., Rao, P., & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. The Lancet, 392(10162), 2388–2396. https://doi.org/10.1016/S0140-6736(18)31645-3

    CrossRef  Google Scholar 

  • Chollet, F., & Allaire, J. J. (2018). Deep learning, with R. Manning Publications.

    Google Scholar 

  • Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y

    CrossRef  Google Scholar 

  • Enzmann, D. R. (2012). Radiology’s value chain. Radiology, 263(1), 243–252. https://doi.org/10.1148/radiol.12110227

    CrossRef  Google Scholar 

  • Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics: a review publication of the Radiological Society of North America, Inc, 37(2), 505–515. https://doi.org/10.1148/rg.2017160130.

  • Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.

    Google Scholar 

  • Giger, M. L. (2018). Machine learning in medical imaging. Journal of the American College of Radiology, 15(3), 512–520. https://doi.org/10.1016/j.jacr.2017.12.028

    CrossRef  Google Scholar 

  • Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images are more than pictures they are data. Radiology, 278(2), 563–577. https://doi.org/10.1148/radiol.2015151169

  • Grafe, S., & Bruns, W. (1998). Richtlinien – Leitlinien – Standards. Arztrecht, 7, 81–187.

    Google Scholar 

  • Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P. C., Mega, J. L., & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410. https://doi.org/10.1001/jama.2016.17216

    CrossRef  Google Scholar 

  • Haan, M., Ongena, Y. P., Hommes, S., Kwee, T. C., & Yakar, D. (2019). A qualitative study to understand patient perspective on the use of artificial intelligence in radiology. Journal of the American College of Radiology(JACR), 16, 1416–1419. https://doi.org/10.1016/j.jacr.2018.12.043.

  • He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. https://doi.org/10.1038/s41591-018-0307-0

    CrossRef  Google Scholar 

  • Hofmann, P., Oesterle, S., Rust, P., & Urbach, N. (2019). Machine learning approaches along the radiology value chain – Rethinking value propositions. Proceedings of the 27th European Conference on Information Systems (ECIS).

    Google Scholar 

  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology Nature reviews. Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5

    CrossRef  Google Scholar 

  • Jarrett, D., Stride, E., Vallis, K., & Gooding, M. J. (2019). Applications and limitations of machine learning in radiation oncology. The British Journal of Radiology, 92(1100), 20190001. https://doi.org/10.1259/bjr.20190001

    CrossRef  Google Scholar 

  • Ketikidis, P., Dimitrovski, T., Lazuras, L., & Bath, P. A. (2012). Acceptance of health information technology in health professionals: An application of the revised technology acceptance model. Health informatics journal, 18(2), 124–134. https://doi.org/10.1177/1460458211435425

    CrossRef  Google Scholar 

  • Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. International journal of medical informatics, 78(6), 404–416. https://doi.org/10.1016/j.ijmedinf.2008.12.005

    CrossRef  Google Scholar 

  • Krupinski, E. A., Berbaum, K. S., Caldwell, R. T., Schartz, K. M., & Kim, J. (2010). Long radiology workdays reduce detection and accommodation accuracy. Journal of the American College of Radiology (JACR), 7(9), 698–704. https://doi.org/10.1016/j.jacr.2010.03.004

    CrossRef  Google Scholar 

  • Laï, M.-C., Brian, M., & Mamzer, M.-F. (2020). Perceptions of artificial intelligence in healthcare: Findings from a qualitative survey study among actors in France. Journal of Translational Medicine, 18(1), 1–13. https://doi.org/10.1186/s12967-019-02204-y

    CrossRef  Google Scholar 

  • Larvie, M. (2019). Machine learning in radiology: Resistance is futile. Radiology, 290(2), 465–466. https://doi.org/10.1148/radiol.2018182312

    CrossRef  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

    CrossRef  Google Scholar 

  • Lell, M. M., & Kachelrieß, M. (2020). Recent and upcoming technological developments in computed tomography: High speed, low dose, deep learning, Multienergy. Investigative radiology, 55(1), 8–19. https://doi.org/10.1097/RLI.0000000000000601

    CrossRef  Google Scholar 

  • Liebscher, L., Sherry, C., Breslau, J., Dodd, G., Fleishon, H., Larson, P., Meltzer, C., & Strax, R. (2012). The general radiologist in the 21st century. Journal of the American College of Radiology(JACR), 9(8), 554–559. https://doi.org/10.1016/j.jacr.2012.05.016.

  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the dartmouth summer research project on artificial intelligence. Stanford University (Hrsg.). http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html. Zugegriffen: 27. März 2020.

  • McDonald, R. J., Schwartz, K. M., Eckel, L. J., Diehn, F. E., Hunt, C. H., Bartholmai, B. J., Erickson, B. J., & Kallmes, D. F. (2015). The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Academic Radiology, 22(9), 1191–1198. https://doi.org/10.1016/j.acra.2015.05.007

    CrossRef  Google Scholar 

  • Ng, K. H., Cheung, K. Y., Hu, Y. M., Inamura, K., Kim, H. J., Krisanachinda, A., Leung, J., Pradhan, A. S., Round, H., van Doomo, T., Wong, T. J., & Yi, B. Y. (2009). The role, responsibilities and status of the clinical medical physicist in AFOMP. Australasian physical & engineering sciences in medicine, 32(4), 175–179. https://doi.org/10.1007/bf03179236

    CrossRef  Google Scholar 

  • Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental, 2(1), 35. https://doi.org/10.1186/s41747-018-0061-6

    CrossRef  Google Scholar 

  • Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature medicine, 25(1), 37–43. https://doi.org/10.1038/s41591-018-0272-7

    CrossRef  Google Scholar 

  • Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C. P., Patel, B. N., Yeom, K. W., Shpanskaya, K., Blankenberg, F. G., Seekins, J., Amrhein, T. J., Mong, D. A., Halabi, S. S., Zucker, E. J., … Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS medicine, 15(11), e1002686. https://doi.org/10.1371/journal.pmed.1002686

  • Razi, M., & Athappily, K. (2005). A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications, 29(1), 65–74. https://doi.org/10.1016/j.eswa.2005.01.006

    CrossRef  Google Scholar 

  • Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., Helbich, T. H., Chevalier, M., Tan, T., Mertelmeier, T., Wallis, M. G., Andersson, I., Zackrisson, S., Mann, R. M., & Sechopoulos, I. (2019). Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists. Journal of the National Cancer Institute, 111(9), 916–922. https://doi.org/10.1093/jnci/djy222

    CrossRef  Google Scholar 

  • Rogers, E. M. (2010). Diffusion of innovations (4. Aufl.). Simon and Schuster Publishing.

    Google Scholar 

  • Rubin, D. L. (2019). Artificial intelligence in imaging: The radiologist’s role. Journal of the American College of Radiology, 16(9), 1309–1317. https://doi.org/10.1016/j.jacr.2019.05.036

    CrossRef  Google Scholar 

  • Sahiner, B., Pezeshk, A., Hadjiiski, L. M., Wang, X., Drukker, K., Cha, K. H., Summers, R. M., & Giger, M. L. (2019). Deep learning in medical imaging and radiation therapy. Medical Physics, 46(1), e1–e36. https://doi.org/10.1002/mp.13264

    CrossRef  Google Scholar 

  • Smith, G. G., Thrall, J. H., Pentecost, M. J., Fleishon, H. B., Knipp, H. C., Adams, M. J., Rumack, C. M., Blumberg, A. L., Hoppe, R. T., Sunshine, J. H., & Moser, J. W. (2009). Subspecialization in radiology and radiation oncology. Journal of the American College of Radiology (JACR), 6(3), 147-159.e4. https://doi.org/10.1016/j.jacr.2008.11.025

    CrossRef  Google Scholar 

  • Thompson, R. F., Valdes, G., Fuller, C. D., Carpenter, C. M., Morin, O., Aneja, S., Lindsay, W. D., Aerts, H. J. W. L., Agrimson, B., Deville, C., Rosenthal, S. A., Yu, J. B., & Thomas, C. R. (2018). Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation? Radiotherapy and Oncology, 129(3), 421–426. https://doi.org/10.1016/j.radonc.2018.05.030

    CrossRef  Google Scholar 

  • Thrall, J. H., Li, X., Li, Q., Cruz, C., Do, S., Dreyer, K., & Brink, J. (2018). Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. Journal of the American College of Radiology (JACR), 15(3), 504–508. https://doi.org/10.1016/j.jacr.2017.12.026

    CrossRef  Google Scholar 

  • Tsapaki V., Tabakov S., Rehani M. M. (2018) Medical physics workforce: A global perspective. Physica medica(PM): an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), 55, 33–39. https://doi.org/10.1016/j.ejmp.2018.10.012.

  • Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

    CrossRef  Google Scholar 

  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540

    CrossRef  Google Scholar 

  • Waite, S., Scott, J., Gale, B., Fuchs, T., Kolla, S., & Reede, D. (2017). Interpretive error in radiology. American journal of roentgenology (AJR), 208(4), 739–749. https://doi.org/10.2214/AJR.16.16963.

  • Wu, J.-H., Wang, S.-C., & Lin, L.-M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International journal of medical informatics, 76(1), 66–77. https://doi.org/10.1016/j.ijmedinf.2006.06.006.

  • Yasaka, K., & Abe, O. (2018). Deep learning and artificial intelligence in radiology: Current applications and future directions. PLoS medicine, 15(11), e1002707. https://doi.org/10.1371/journal.pmed.1002707.

  • Yi, M. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350–363. https://doi.org/10.1016/j.im.2005.08.006

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Kauffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kauffmann, A.L., Hennrich, J., Buck, C., Eymann, T. (2022). Künstliche Intelligenz in der Radiologie und Strahlentherapie aus der Perspektive von Ärzten und Medizinphysikexperten – Eine Interviewstudie. In: Pfannstiel, M.A. (eds) Künstliche Intelligenz im Gesundheitswesen. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-33597-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-33597-7_29

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-33596-0

  • Online ISBN: 978-3-658-33597-7

  • eBook Packages: Business and Economics (German Language)