Skip to main content

Significance of Synthetic Methane for Energy Storage and CO2 Reduction in the Mobility Sector

  • Conference paper
  • First Online:
21. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2253 Accesses

Abstract

The introduction of synthetic fuels is one approach to reducing CO2 emissions in the transport sector. In this context, synthetic methane is promising due to the high degree of development of the technology and easy substitution in the vehicle fleet. In particular, the existing infrastructure including gas grid, gas storage, and filling stations as well as existing trade mechanisms allow a comparatively fast substitution of fossil natural gas by synthetic methane for light and heavy duty vehicles. This study discusses the direct potential for substitution of parts of the newly registered vehicle fleet with gas vehicles, fueled with synthetic methane, and compares it to the potential of using fuel cell electric vehicles relying on hydrogen. The production path of hydrogen and synthetic methane is analyzed with respect to electricity demand and overall associated CO2 emissions. The result is an estimate of the well-to-wheel CO2 emissions of vehicles fueled with hydrogen or synthetic methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technical compression work estimated according to Ref. [2] as three-stage compression with interstage cooling to 50°C and isentropic compressor efficiency of 0.85. Product pressure level of 270 bar assumed according to typical CNG refueling pressures.

  2. 2.

    The maximum attainable conversion was estimated as described in Sec. 1.2 assuming reaction conditions of maximum 350°C and 5 bar and considering a dew point of −10°C to meet feed-in regulation of gas grids.

  3. 3.

    Vehicle segments (number; average mileage in km/a/vehicle) according [8]: Micro (18815; 11684), Small (43736; 13352), Compact (74109; 16158), Sport (2888; 9640), Midsize (26766; 17240), Multi purpose (33931; 16975), Upper class(5328; 14386), SUV (96957; 17383), Luxury (5258; 18120), others (4452; 14993).

References

  1. Linstrom, P.J., Mallard, W.G., (eds.): NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899. https://doi.org/10.18434/T4D303. Accessed 18 Jan 2021

  2. Walspurger, S., Elzinga, G.D., Dijkstra, J.W., Sarić, M., Haije, W.G.: Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations. Chem Eng J 242, 379–386 (2014)

    Article  Google Scholar 

  3. Climeworks AG: Direct air capture. https://climeworks.com/co2-removal. Accessed 19 Jan 2021

  4. Parks, G., Boyd, R., Cornish, J., Remick, R.: Hydrogen station compression, storage, and dispensing technical status and costs: systems integration. Technischer Bericht. National Renewable Energy Laboratory, NREL. http://www.osti.gov/servlets/purl/1130621/ (2014). Accessed 22 Jan 2021

  5. Neubert, M.F.W.: Catalytic methanation for small- and mid-scale SNG production. Friedrich-Alexander Universität Erlangen-Nürnberg (2019)

    Google Scholar 

  6. Sternberg, A., Hank, C., Hebling, C.: Greenhouse gas emissions for battery electric and fuel cell electric vehicles with ranges over 300 kilometers. Fraunhofer ISE, Freiburg. https://www.ise.fraunhofer.de/content/dam/ise/en/documents/News/190815_LCA-BEV-FCEV_Results_EnglishVersion.pdf (2019). Accessed 19 Jan 2021

  7. Wirth, H.: Aktuelle Fakten zur Photovoltaik in Deutschland. www.pv-fakten.de. Fraunhofer ISE, Freiburg (2020)

  8. Teske, S.L., Rüdisüli, M., Bach, C., Schildhauer, T.: Potentialanalyse Power-to-Gas in der Schweiz. Report. Empa, Dübendorf & Paul Scherrer Institut, Villigen PSI (2019). https://doi.org/10.5281/zenodo.2649816

  9. Moro, A., Lonza, L.: Electricity carbon intensity in European member states: impacts on GHG emissions of electric vehicles. Transp Res Part D 64, 5–14 (2018)

    Article  Google Scholar 

  10. Kälin, S.: Synthetisches gas statt fossile energie. https://www.empa.ch/de/web/s604/move-mega,07.04.2020. Accessed 10 Jan 2021

  11. Goodwin, D.G., Speth, R.L., Moffat, H.K., Weber, B.W.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org (2018). Version 2.4.0. https://doi.org/10.5281/zenodo.1174508

  12. Morosanu, E.A., Saldivia, A., Antonini, M., Bensaid, S.: Process modeling of an innovative power to LNG demonstration plant. Energy Fuels 32, 8868–8879 (2018)

    Article  Google Scholar 

  13. Store&Go project: https://www.storeandgo.info/demonstration-sites/. Accessed 19 Jan 2021

  14. Schollenberger, D., Bajohr, S., Gruber, M., Reimert, R., Kolb, T.: Scale-up of innovative honeycomb reactors for power-to-gas applications – the project store&go. Chem Ing Tech 90, 696–702 (2018)

    Article  Google Scholar 

  15. Fischer, K.L., Freund, H.: Intensification of load flexible fixed bed reactors by optimal design of staged reactor setups. Chemical Engineering and Processing ‒ Process Intensification. 108183 (2020)

    Google Scholar 

  16. Borgschulte, A., Gallandat, N., Probst, B., Suter, R., Callini, E., Ferri, D., Arroyo, Y., Erni, R., Geerlings, H., Züttel, A.: Sorption enhanced CO2 methanation. Phys Chem Chem Phys 15, 9620 (2013)

    Article  Google Scholar 

  17. Borgschulte, A., Delmelle, R., Duarte, R.B., Heel, A., Boillat, P., Lehmann, E.: Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging. Phys Chem Chem Phys 18, 17217–17223 (2016)

    Article  Google Scholar 

  18. Kroher, T.: Test Hyundai Nexo: Elektro-SUV mit Brennstoffzelle. https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/hyundai/hyundai-nexo/. Accessed 24 Feb 2020

  19. ASTRA Swiss Federal Roads Office: Motorfahrzeuginformationssystem der Eidgenössischen Fahrzeugkontrolle (MOFIS). https://files.ad-min.ch/astra_ffr/. Accessed 28 Oct 2019

  20. Stolz, P., Frischknecht, R.: Energieetikette für Personenwagen: Umweltkennwerte 2019 der Strom- und Treibstoffbereitstellung. Bundesamt für Energie BFE, Bern (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiefer, F., Schröter, K., Dimopoulos Eggenschwiler, P., Bach, C. (2021). Significance of Synthetic Methane for Energy Storage and CO2 Reduction in the Mobility Sector. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 21. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33521-2_6

Download citation

Publish with us

Policies and ethics