Skip to main content

Thermomanagement of Li-Ion Battery Cells During Charge/discharge Processes: Experiments and Simulations

  • Conference paper
  • First Online:
21. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2616 Accesses

Abstract

Battery electric vehicles (BEVs) can represent a feasible solution for reaching the legislative CO2 reduction targets. Li-Ion batteries are the most promising candidates for BEVs due to their high energy density (200 Wh/kg). Heat generation during charge/discharge processes causes temperature increase and thermal management is indispensable. Also temperature gradients inside a cell and a pack must be minimized. This work investigates the thermal behaviour of battery cells during charging/discharging processes both experimentally and numerically. Measurements of several charging/discharging cycles at different ambient temperatures and C-rates are used to build mathematical models of the heat generation due to ohmic/kinetic resistances and entropy variation in function of temperature and state of charge. Numerical simulations in OpenFOAM solve the heat conduction problem inside the cell with air convection at the external surfaces and a heat source in the core. A parametric study to evaluate the impact of discharge/charge rate, ambient temperature, convection conditions and material properties is proposed. Heat losses at slow discharge rates (<0.5C) are below 1% of the power output of the cell and they depend similarly both from ohmic resistance and entropy variation, while at higher discharging rates total heat generation rates reach 5% (at 5C rates) of the power output. Moreover, the heat generation increases disproportionally at very low state of charge levels, SoC < 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Legislative proposal 2017/0293(COD) - 08/11/2017: https://oeil.secure.europarl.europa.eu/oeil/popups/printficheglobal.pdf?id=687277&l=en. Accessed 12 Jan 2020

  2. Regulations (EC) No 443/2009 (EU) No 510/2011: https://oeil.secure.europarl.europa.eu/oeil/popups/printficheglobal.pdf?id=687277&l=en. Accessed 12 Jan 2020

  3. Teske S. L., Rüdisüli M., Bach C., Schildhauer T.: Potentialanalyse Power-to-Gas in der Schweiz. Report. Empa (Dübendorf) & Paul Scherrer Institut (Villigen PSI). doi:https://doi.org/10.5281/zenodo.2649816(2019)

  4. Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Article  Google Scholar 

  5. Pesaran A.A.: Battery Thermal Management in EVs and HEVs: Issues and Solutions Battery Thermal Management in EVs and HEVs: Issues and Solutions. in Advanced Automotive Battery Conference (2001)

    Google Scholar 

  6. Bandhauer, T.M., Garimella, S., Fuller, T.F.: A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 158, R1 (2011)

    Article  Google Scholar 

  7. Liu, H., Wei, Z., He, W., Zhao, J.: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 150, 304 (2017)

    Article  Google Scholar 

  8. Wang, C.Y., Srinivasan, V.: Computational battery dynamics (CBD)-electrochemical/thermal coupled modeling and multi-scale modeling. J. Power Sources 110, 364 (2002)

    Article  Google Scholar 

  9. Zhang, X.: Thermal analysis of a cylindrical lithium-ion battery. Electrochim. Acta 56, 1246 (2011)

    Article  Google Scholar 

  10. Xiao, M., Choe, S.: Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery. J. Power Sources 241, 46 (2013)

    Article  Google Scholar 

  11. Lai Y., Du S., Ai, L., Cheng, Y.Y.Y.T., Ji, M.: Insight into heat generation of lithium-ion batteries based on the electrochemical-thermal model at high discharge rates. Int. J. Hydrogen Energy, 40, 13039–13049 (2015)

    Google Scholar 

  12. Heubner, C., Schneider, M., Michaelis, A.: Detailed study of heat generation in porous LiCoO2 electrodes. J. Power Sources 307, 199 (2016)

    Article  Google Scholar 

  13. Mistry, A.N., Palle, H.R., Mukherjee, P.P.: In operando thermal signature probe for lithium-ion batteries. Appl. Phys. Lett. 114, 023901 (2019)

    Article  Google Scholar 

  14. Bernardi D., Pawlikowski E., Newman J.: A general energy balance for battery systems. J. Electrochem. Soc. 132(1), 5e12 (1985)

    Google Scholar 

  15. Bhatia P.C.: Thermal analysis of Lithium-ion Battery Packs and Thermal Management Solutions (Master's thesis). Ohio State University (2013)

    Google Scholar 

  16. Gu W.B., Wang C.Y.: Thermal-electrochemical modeling of battery systems. J. Electrochem. Soc. 147(8), 2910e2922 (2000)

    Google Scholar 

  17. Fathabadi, H.: A novel design including cooling media for Lithium-ion batteries pack used in hybrid and electric vehicles. J. Power Sources 245(1), 495–500 (January 2014). https://doi.org/10.1016/j.jpowsour.2013.06.160

  18. OpenFOAM, OpenFOAM documentation. https://www.openfoam.org/docs/

  19. Della Torre, A., Montenegro, G., Onorati, A., Cerri, T.: CFD investigation of the impact of electrical heating on the light-off of a diesel oxidation catalyst. SAE Technical Paper 2018-01-0961 (2018)

    Google Scholar 

  20. Chiappini, D., Tribioli, L., Bella, G.: A coupled lattice boltzmann-finite volume method for the thermal transient modeling of an air-cooled li-ion battery cell for electric vehicles. SAE (Society of Automotive Engineers) Paper, 2019-24-0207 (2019)

    Google Scholar 

  21. Al-Hallaj S., Prakash J., Selman J.R.: Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J Power Sources 87(s 1–2):186–194, doi: https://doi.org/10.1016/S0378-7753(99)00472-3 (April 2000)

  22. Chandrasekaran, R.J.: Quantification of contributions to the cell overpotential during galvanostatic discharge of a lithium-ion cell. Power Sources 262, 501–513 (2014)

    Article  Google Scholar 

  23. Gümüssu E.: Thermal modeling of Lithium ion batteries, Master of Sciences, Department of Mechanical Engineering: Thesis Supervisor: Assist. Prof. Dr, Özgür Ekici (May 2017)

    Google Scholar 

  24. Inui, Y., Kobayashi, Y., Watanabe, Y., Watase, Y., Kitamura, Y.: Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers. Manage. 48, 2103–2109 (2007)

    Article  Google Scholar 

  25. Zahn, R., Lagadec, M.F., Wood, V.: Transport in Lithium Ion Batteries: Reconciling Impedance and Structural Analysis. ACS Energy Lett. 2, 2452–2453 (2017). https://doi.org/10.1021/acsenergylett.7b00740

    Article  Google Scholar 

  26. Jacoby M.: it's time to recycle Lithium-ion batteries. c&en Chicago (July 2019)

    Google Scholar 

  27. Viswanathan, V., et al.: Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J. Power Sources 195, 3720–3729 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayotis Dimopoulos Eggenschwiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimopoulos Eggenschwiler, P., Papetti, V., Torre, A.D. (2021). Thermomanagement of Li-Ion Battery Cells During Charge/discharge Processes: Experiments and Simulations. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 21. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33466-6_44

Download citation

Publish with us

Policies and ethics