Skip to main content

Propulsion Systems

  • Chapter
  • First Online:
Ship Operation Technology
  • 798 Accesses

Zusammenfassung

When sailing through the water, the ship has to work against wind and waves. The water on the underwater hull and the air on the surface hull cause frictional resistance on the hull due to their flow behavior, which ultimately has to be bridged by the propulsion system. The dimensioning and design of this system and especially of the power generator depend on the ship’s resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Frigate Captain Sauerborn during a lecture at the Armed Forces Command and Staff College on January 14, 2010 in Hamburg.

  2. 2.

    In addition to fuel costs, operating costs include crew wages, loan repayments, repair and maintenance costs, contractual penalties for late delivery, and much more [54].

  3. 3.

    What is possible in individual cases depends on many factors, such as the intended area of operation (for example, a passage through the Panama Canal alone limits the size of a ship), but also ultimately the willingness of the shipowner to invest.

  4. 4.

    Every combustion process produces, among other things, the climate-relevant gas CO2.

  5. 5.

    See Sect. 4.2.3.

  6. 6.

    From the English “resistance.”

  7. 7.

    Generally also called flow resistance.

  8. 8.

    Meier-Peter in [18, p. 354]; in addition, there are often also simplified approaches, which will not be discussed in detail here.

  9. 9.

    Meier-Peter in [18, p. 356].

  10. 10.

    Meier-Peter in [18, p. 356].

  11. 11.

    Meier-Peter in [18, p. 356 f.].

  12. 12.

    Meier-Peter in [18, p. 354].

  13. 13.

    Fresh water at 20 °C 1000 kg ∕ m3, seawater at 20 °C about 1026 kg ∕ m3.

  14. 14.

    Turbulent flow = swirl flow; laminar flow = the streamlines run parallel to the main movement.

  15. 15.

    For large ships, the Reynolds numbers range up to 109.

  16. 16.

    Deepening to corner in [6, Volume I, p. 322, 300 ff.].

  17. 17.

    At 10 °C about \(1.3 \cdot 10^{ - 6} {\mkern 1mu} {\text{m}}^{{2}} {\text{/s}}\).

  18. 18.

    Set of the conservation of energy. The B.-G. states that in a stationary flow, the sum of static and dynamic pressure is constant and corresponds to the total pressure of the resting liquid; more [20, p. 108].

  19. 19.

    Meier-Peter in [18, p. 355].

  20. 20.

    More details on this corner in [6, Volume I, p. 326]; it is generally between 0.20 and 0.35.

  21. 21.

    In the literature, a C-value between 0.03 and 0.05 is given as the total resistance coefficient for today’s ships (see also [27]).

  22. 22.

    All usual ships of the large shipping like passenger ships, freighters, etc.

  23. 23.

    1 nm = 1 nautical mile = 1.852 km.

  24. 24.

    Meier-Peter in [18, p. 354]; this lies between 0.65 and 0.75; see also [41].

  25. 25.

    Meier-Peter in [18, p. 357].

  26. 26.

    See also [48].

  27. 27.

    The low approach of RZ and RL is based on the one hand on the fact that this ship has no rudder blades for steering movements, but rather nacelles equipped with propellers that can rotate 360°, and on the other hand, the low air resistance might be justified by the rather aerodynamically optimal design of the superstructure; further corner in [6, Volume I, p. 326].

  28. 28.

    From [6, Volume I, p. 324] for re-sensitive body shape.

  29. 29.

    This is a realistic value—the Titanic had a resistance coefficient of C = 0.3; in many cases, the projected underwater cross-sectional area is only used for rough calculations according to Eq. 4.1, without differentiating between the individual resistance components, which gives sufficiently accurate results for practical use [32, 38].

  30. 30.

    Assumption due to the particularly efficient “nacelle propulsion.”

  31. 31.

    Rarely—rather in the sports boat sector—also petrol engines.

  32. 32.

    Detectability for hostile detection systems (e.g., infrared signature by heat radiation, noise signature by acoustic coupling).

  33. 33.

    From the English “pod” = housing; “azi” is a borrowing from Arabic and is supposed to express that the nacelle can be rotated to all angles (360°).

  34. 34.

    In order to achieve a uniform service life of gearbox and motor, the required torques M must be increased by the respective operating factor fB at the various operating loads in order not to exceed the maximum permissible gearbox torque.

  35. 35.

    See also Sect. 4.3.1 below.

  36. 36.

    See below [57].

  37. 37.

    For more details see also [49].

  38. 38.

    See also an old, but interesting compilation in [5].

  39. 39.

    For details on ship diesel engines, see also Behrens and Boy “ship diesel engines” in [23, p. 22 ff.].

  40. 40.

    Kraemer “diesel engines” in [6, Volume II, p. 141 f.].

  41. 41.

    For example, used as an outboard motor in small sports boats.

  42. 42.

    On the above methods, see also Kraemer in [6, Volume II, p. 142].

  43. 43.

    Kraemer in [6, Volume II, p. 145].

  44. 44.

    Also in-depth [56].

  45. 45.

    See also [73].

  46. 46.

    For further details see again Kraemer in [6, Volume II, p. 147 ff.], also [36].

  47. 47.

    See also [69].

  48. 48.

    LNG, “liquefied natural gas.”.

  49. 49.

    TDC = top dead center of the piston.

  50. 50.

    As in the case of the guided missile destroyers of the German Navy LÜTJENS, MÖLDERS, and ROMMEL, which have already been decommissioned today.

  51. 51.

    More in-depth [9, p. 336 ff.].

  52. 52.

    For cavitation, see also Sect. 4.4.2.7.

  53. 53.

    For the areas of application and special designs, see also [72].

  54. 54.

    See for example [29].

  55. 55.

    The following from [42]; for the pulse inverter, also see [40, 44].

  56. 56.

    For details on the function and design of frequency inverters, see [46].

  57. 57.

    For the pole wheel, see below.

  58. 58.

    Also for example [67].

  59. 59.

    The standard volume is related to the standard physical state: \(273.15{\mkern 1mu} \;{\text{K}} = 0{\mkern 1mu}^{^\circ } {\text{C}}\) and p = 1.01325 bar.

  60. 60.

    Wind speeds according to the Beaufort Scale see Annex 13.

  61. 61.

    See for example company Ketten-Fuchs [78].

  62. 62.

    This is discussed in more detail [19, 77].

  63. 63.

    So, for example, also with the frigates of class F 124 of the German Navy.

  64. 64.

    For further details on the following see also Meier-Peter in [23, p. 260 ff.].

  65. 65.

    Lehmann in [23, p. 892 ff.].

  66. 66.

    See Sect. 4.4.2.7.

  67. 67.

    The wake is given as a percentage of the ship speed.

  68. 68.

    For detailed shaft calculations, see also Böge et al. in [3].

  69. 69.

    See Sect. 4.3 and also “Net power and some diesel engine characteristics,” Sect. 4.3.1.

  70. 70.

    See also Böge et al. in [3, p. I 119 ff.].

  71. 71.

    For further information on plain bearings, see Böge et al. in [3, p. I 177 ff.].

  72. 72.

    For further information on rolling bearings, see Böge et al. in [3, p. I 156 ff.].

  73. 73.

    See for example [79].

  74. 74.

    For further details see: “FAG—Mounting of Rolling Bearings” [80].

  75. 75.

    The following from [47].

  76. 76.

    In detail also again Böge et al. in [3, p. I 181 ff.].

  77. 77.

    Values for k, see also [6, Volume I, p. 739].

  78. 78.

    See also [58].

  79. 79.

    See also [55] for further details.

  80. 80.

    In collaboration with Pfaff, R., B. Eng.

  81. 81.

    For example [17] or also [31].

  82. 82.

    For further details, see also [12].

  83. 83.

    Hardness Rockwell Cone, a hardness testing method using a conical test piece to measure the penetration depth.

References

Print media

  1. Becker, T.: Fregatte Klasse F 125, Neue Wege für die nächste Fregattengeneration der Marine. MarineForum 11/2005. Deutsches Maritimes Institut (DMI), Mittler-Report-Verlag, Bonn (2005)

    Google Scholar 

  2. Binsau, A.: Schaltbare Kupplungen. Hochschule Magdeburg-Stendal, Stendal (2004)

    Google Scholar 

  3. Böge, A., Böge, W.: Handbuch Maschinenbau. Springer Vieweg, Wiesbaden (2017)

    Book  Google Scholar 

  4. Budig, P.-K.: Stromrichtergespeiste Synchronmaschine – Theorie und Anwendungen. VDE-Verlag, Berlin (2003)

    Google Scholar 

  5. Deutsche Verlagswerke Strauss: Deutsche Schiffs-Dieselmotoren. Vetter & Co, Berlin (1935)

    Google Scholar 

  6. Dubbel: DUBBEL Band I und II. Springer, Berlin (1974)

    Google Scholar 

  7. FANAL: Schaltungspraxis. 7. Aufl., Metzenauer & Jung GmbH, Wuppertal

    Google Scholar 

  8. Fischer, R.: Elektrische Maschinen, 14th edn. Hanser, München (2007)

    Google Scholar 

  9. Fister, W.: Fluidenergiemaschinen, vol. 1. Springer, Berlin, Heidelberg, New York (1984)

    Book  Google Scholar 

  10. Fister, W.: Vorlesungsskript „Grundzüge der Fluidenergiemaschinen – Teil II“. Ruhruniversität Bochum, Bochum (1979)

    Google Scholar 

  11. Giersch, H.-U.: Elektrische Maschinen, 5th edn. Teubner, Wiesbaden (2003)

    Google Scholar 

  12. Haas, W.: Grundlehrgang Dichtungstechnik, Institut für Maschinenelemente, Universität Stuttgart. http://www.ime.uni-stuttgart.de. Accessed 28 Dec 2017

  13. Hager, M.: Die Nase macht den Unterschied. In: BOOTE EXCLUSIV 3/06. Delius Klasing, Bielefeld (2006)

    Google Scholar 

  14. Heine, F., Lose, F.: Die großen Passagierschiffe der Welt. Koehlers Verlagsgesellschaft, Hamburg (2010)

    Google Scholar 

  15. Heisel, U., Klocke, F., Uhlmann, E., Spur, G.: Handbuch Spanen. Hanser, München (2014)

    Google Scholar 

  16. Hofbauer, B.-G.: TRUPPENDIENST-Handbuch ‚Moderne Seemacht‘ Bd. 2. Bundesminister für Landesverteidigung und Sport, Wien (2016)

    Google Scholar 

  17. Holschemacher, K.: Entwurfs- und Berechnungstafeln für Bauingenieure, 5th edn. Beuth, Berlin (2012)

    Google Scholar 

  18. Illies, K.: Handbuch der Schiffsbetriebstechnik. Vieweg & Sohn, Braunschweig (1972)

    Google Scholar 

  19. Kornev, N.: Propellertheorie. Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock (2009)

    Google Scholar 

  20. Lexikographisches Institut: Lexikon der Technik Bd. 1. 2. Lexikographisches Institut, München (1986)

    Google Scholar 

  21. Magg, J.: Die Steuerungen der Verbrennungskraftmaschinen. Springer, Berlin (1914)

    Book  Google Scholar 

  22. Marinekommando Rostock: Jahresbericht (2015)

    Google Scholar 

  23. Meier-Peter, H., Bernhardt, F. (eds.): Handbuch Schiffsbetriebstechnik. Seehafen Verlag, Hamburg (2008)

    Google Scholar 

  24. Micknass, W.: Kupplungen, Getriebe, Antriebswellen. Vogel Business Media, Würzburg (2004)

    Google Scholar 

  25. Moeller, F., Vaske, P. (eds.): Elektrische Maschinen und Umformer, Teil 1 Aufbau, Wirkungsweise und Betriebsverhalten, 11th edn. Teubner, Stuttgart (1970)

    Google Scholar 

  26. Peeken, H.: Elastische Kupplungen. Springer, Heidelberg (1986)

    Book  Google Scholar 

  27. Pfaff, M., Pfaff, R.: Strömungsmechanische Grundlagen zum Widerstand von Schiffen. Zeitschrift Hansa 148(6), 38 (2011)

    Google Scholar 

  28. Pinnekamp, W.: Zur Auslegung von Antriebselementen. Eine Analyse des Betriebsfaktors (Stoßbeiwert) k. Konstruktion 18(2), 1966 (1966)

    Google Scholar 

  29. Roseburg, D.: Elektrische Maschinen und Antriebe. Fachbuchverlag Leipzig, Hanser (1999)

    Google Scholar 

  30. Schmidt, E.: Technische Thermodynamik, vol. 1. Springer, Berlin (1975)

    Book  Google Scholar 

  31. Schneider: Bautabellen für Ingenieure. Werner Verlag, Bundesanzeiger Verlag, Köln (2016)

    Google Scholar 

  32. Verband für Schiffbau und Meerestechnik e. V.: Schiffstechnik und Schiffbautechnologie. Seehafen Verlag, Hamburg (2006)

    Google Scholar 

  33. Witthöft, H.-J.: „Schifffahrt“. In: Köhlers Flottenkalender. Koehler, Hamburg (2010)

    Google Scholar 

  34. Witthöft, H.-J.: Erinnerungsdaten – Köhlers Flottenkalender. Koehler, Hamburg (2014)

    Google Scholar 

Internet

  1. Dambeck, H.: Haihaut soll Schiffe schützen, Spiegel Online. http://www.spiegel.de (2010). Accessed 18 July 2005

  2. Herzog, K.: https://www.thm.de/me/images/user/herzog-91/Kolbenmaschinen/Kolbenmaschinen%5Cbreak_3_KenngrosenKennfelder.pdf. Accessed 8 Oct 2016

  3. Köchert, C.: Untersuchung einer Bugwulstmodifikation. http://www.ssi.tu-harburg.de/doc/webseiten_dokumente/ssi/veroeffentlichungen/sdari02.pdf (2002). Accessed 21 Aug 2016

  4. Müller, R.: „Eine Formel in vielen Kontexten: Fermi-Probleme zum Strömungswiderstand“, Universität München. http://www.tu-braunschweig.de/Medien-DB/ifdn-physik/leistung.pdf. Accessed 21 Aug 2016

  5. Vorhölter, H.: Vereinfachte Bestimmung des effektiven Nachstroms in Manövrierzuständen, Institut für Entwerfen von Schiffen und Schiffssicherheit, Technische Universität Hamburg-Harburg. http://www.ssi.tu-harburg.de (2017). Accessed 26 July 2017

  6. http://institute.unileoben.ac.at/etechnik/Ger/Lehre_G/Skripten_G/Files_G/El_Antriebst/T_Pulswechselrichter.pdf. Accessed 9 Oct 2016

  7. Hamburg Harburg, T.U.: Grundlagen der Propulsion. http://www.ssi.tu-harburg.de/doc/webseiten_dokumente/ssi/vorlesungsunterlagen/propulsion.pdf (2004). Accessed 21 Aug 2016

  8. http://elektronik-kurs.net/elektrotechnik/drehzahlregelung-und-drehrichtungssteuerung. Accessed 9 Oct 2016

  9. http://hansamare.de/newsMedia/archiv/onboard/58.html. Accessed 11 Nov 2016

  10. http://link.springer.com/chapter/https://doi.org/10.1007/978-3-8348-2330-4_5. Accessed 9 Oct 2016

  11. http://s-boot.net/sboote-bmarine-klasse-143.html. Accessed 17 Nov 2016

  12. http://ueba.elkonet.de/static/ueba/kundenauftraege/elkonet.de/home/ausbilder_bc/bc/Kernauftrag_02/fachliche%20grundlagen/fachtheorie/frequenzumrichter.aspx.htm. Accessed 9 Oct 2016

  13. http://www.bbs-buxtehude.de/sats/starnet/studentpages/119/Lagermontage.pdf. Accessed 4 Nov 2016

  14. http://www.cruiseferry.de/kreuzfahrer.html. Accessed 12 Nov 2016

  15. http://www.cruisetricks.de/marinediesel-schweroel-co-schiffstreibstoffe-im-ueberblick/. Accessed 24 Nov 2016

  16. http://www.elektrotechnik-fachwissen.de/wechselstrom/leistung-wechselstrom.php

  17. http://www.fluiten.de/PDF2008/CAT025_ENG_L.pdf. Accessed 4 Feb 2017

  18. http://www.fregatte-klasse122.de/technische-daten/antrieb/. Accessed 13 Nov 2016

  19. http://www.geaviation.com/marine/engines/military/lm2500plus/. Accessed 20 Nov 2016

  20. http://www.geschlossener-fonds.net/betriebskosten.html. Accessed 21 Aug 2016

  21. http://www.goepf.bettschen.org/Statik12.pdf. Accessed 25 July 2017

  22. http://www.kfztech.de/kfztechnik/motor/diesel/commonrail.htm. Accessed 17 Nov 2016

  23. http://www.kfztech.de/kfztechnik/motor/steuerung/fuellung.htm. Accessed 13 Nov 2016

  24. http://www.konstruktionsatlas.de/antriebstechnik/kupplungen-starre.shtml. Accessed 4 Nov 2016

  25. https://www.ksb.com/ksb-de/Produktbauarten/Gleitringdichtung/. Accessed 4 Feb 2017

  26. http://www.marine.de/portal/a/marine/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP3I5EyrpHK93MQivfLEtLTUvNI8vdKk_PySVD0jQ6NEvZLU5Iy8zGz9gmxHRQBPgSDG/. Accessed 31 Oct 2016

  27. http://www.mtu-report.com/pdf/1003/2010_03_MTU_Report_Seefest.pdf. Accessed 1 Nov 2016

  28. http://www.saiya.de/maschbau/odm_Otto-Diesel-1.3.5.pdf. Accessed 8 Oct 2016

  29. http://www.schrittmotoren.de/fachwissen/motoren/f_beitr_00_311.htm. Accessed 8 Oct 2016

  30. http://www.sealsystems.de/fileadmin/mediaFiles/Kundentag/2014/Vortraege/05_SKF_BVI_Anwenderbericht.pdf. Accessed 4 Feb 2017

  31. http://www.simplexturbulo.com/de/schiffsindustrie/komponenten-antriebswellen/simplex-sterntube-seals-sc2/. Accessed 4 Feb 2017

  32. http://www.skf.com/de/products/seals/industrial-seals/power-transmission-seals/radial-shaft-seals/seal-installation-general-industrial-applications/index.html. Accessed 4 Jan 2017

  33. https://www.springerprofessional.de/energietechnik/elektrotechnik/der-ideale-elektromotor-fuer-die-elektromobilitaet/6592306. Accessed 20 Nov 2016

  34. http://www.ssi.tu-harburg.de/doc/webseiten_dokumente/ssi/vorlesungsunterlagen/propeller.pdf. Accessed 4 Nov 2016

  35. http://www.thm.de/me/images/user/herzog-91/Kolbenmaschinen/Kolbenmaschinen_3_KenngrosenKennfelder.pdf. Accessed 8 Oct 2016

  36. https://www.tib.eu/de/suchen/id/tema%3ATEMA20061106135/32-40-PGI-Neuer-Otto-Gasmotor-ohne-Z%C3%BCndkerzen/. Accessed 19 July 2017

  37. https://www.umweltbundesamt.de/antifouling-mittel. Accessed 21 Aug 2016

  38. http://www.vem-group.com/fileadmin/content/pdf/Download/Brosch%C3%BCren/Flyer_VEM-Sachsenwerk/schiffbau_de.pdf. Accessed 20 Nov 2016

  39. http://www.wer-weiss-was.de/t/start-eines-schiffsdiesels/2886892. Accessed 17 Nov 2016

  40. http://de.wikipedia.org/wiki/Common-Rail-Einspritzung. Accessed 17 Nov 2016

  41. http://de.wikipedia.org/wiki/Dieselkraftstoff. Accessed 8 Oct 2016

  42. http://de.wikipedia.org/wiki/Pumpe-D%C3%BCse-System. Accessed 28 Dec 2017

  43. http://www.fachwissen-dichtungstechnik.de. Accessed 28 Dec 2017

  44. http://www.ketten-fuchs.de. Accessed 28 Dec 2017

  45. http://www.orion-corp.com. Accessed 28 Dec 2017

  46. http://www.schaeffler.com. Accessed 28 Dec 2017

  47. http://www.vesconite.com. Accessed 28 Dec 2017

Further reading

  1. http://www.ssi.tu-harburg.de. Accessed 28 Dec 2017

  2. Illies, K. (ed.): Handbuch der Schiffsbetriebstechnik – Teil 1. Vieweg, Braunschweig, Wiesbaden (1984)

    Google Scholar 

  3. Schnabel, P.: http://www.elektronik-kompendium.de. Accessed 28 Dec 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Pfaff .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfaff, M. (2022). Propulsion Systems. In: Ship Operation Technology. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-32729-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-32729-3_4

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-32728-6

  • Online ISBN: 978-3-658-32729-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics