Zusammenfassung
This work provides a guideline for a structural approach towards data mining projects in tribology. Due to the specifics of tribological processes, parts of the DMME methodology need to be refined. The refined data mining methodology is applied to an on-going data mining project in tribology aimed at predicting wear rate and coefficient of friction of nitrocarburised coatings. The applied adapted methodology provides an efficient framework for data generation, preparation and analysis. At the same time, it supports and guides interdisciplinary work between data scientists and tribologists.
Schlüsselwörter
- tribology
- data mining
- DMME
- methodology
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Literatur
A. I. Vakis et al., ‘Modeling and simulation in tribology across scales: An overview’, Tribol. Int., vol. 125, pp. 169–199, Sep. 2018, doi:https://doi.org/10.1016/j.triboint.2018.02.005
Y. Ji, J .Bao, Y. Yin, and C. Ma, ‘Applicationsof Artificial Intelligence in Tribology’,Recent Pat. Mech. Eng.,vol.9, no. 3,pp. 193–205, 2016, doi:https://doi.org/10.2174/2212797609666160714145845
T. Kolodziejczyk, R. Toscano, S. Fouvry, and G. Morales-Espejel, ‘Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction’, Wear, vol. 268, no. 1–2, pp. 309–315, Jan. 2010, doi: https://doi.org/10.1016/j.wear.2009.08.016.
I. Argatov, ‘Artificial Neural Networks (ANNs) as a Novel Modeling Technique in Tribology’, Front. Mech. Eng., vol. 5, May 2019, doi:https://doi.org/10.3389/fmech.2019.00030.
D. Nowell and P. W. Nowell, ‘A machine learning approach to the prediction of fretting fatigue life’, Tribol. Int., vol. 141, p. 105913, Jan. 2020, doi: https://doi.org/10.1016/j.triboint.2019.105913.
E. Ciulli, ‘Tribology and Industry: From the Origins to 4.0’, Front. Mech. Eng., vol. 5, Sep. 2019, doi: https://doi.org/10.3389/fmech.2019.00055.
W. J. Lee, H. Wu, H. Yun, H. Kim, M. B. G. Jun, and J. W. Sutherland, ‘Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data’, Procedia CIRP, vol. 80, pp. 506–511, 2019, doi: https://doi.org/10.1016/j.procir.2018.12.019.
X. Xu et al., ‘Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models’, Knowl.-Based Syst., p. 105324, Dec. 2019, doi: https://doi.org/10.1016/j.knosys.2019.105324.
S. Bhaumik, S. D. Pathak, S. Dey, and S. Datta, ‘Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties’, Tribol. Int., vol. 140, p. 105813, Dec. 2019, doi: https://doi.org/10.1016/j.triboint.2019.06.006.
A. Azevedo and M. F. Santos, ‘KDD, SEMMA and CRISP-DM: A Parallel Overview’, IADIS Eur. Conf. Data Min., pp. 182–185, 2008.
P. Chapman et al., ‘Step-by-step data mining guide’, SPSS Inc, vol. 1.0, p. 76, 2000.
H. Wiemer, L. Drowatzky, and S. Ihlenfeldt, ‘Data Mining Methodology for Engineering Applications (DMME)—A Holistic Extension to the CRISP-DM Model’, Appl. Sci., vol. 9, no. 12, p. 2407, Jun. 2019, doi: https://doi.org/10.3390/app9122407.
‘OMG SysML’. [Online]. Available: https://www.omgsysml.org/.
S. Walch, P. Kranabitl, M. Bajzek, T. Wopelka, H. Hick, and S. Kolleger, ‘Model Based Systems Engineering in der Tribologie - Anwendung eines SysML-Tools in der Reib- und Verschleißanalyse von Antriebsstrangkomponenten’, in Tribologe in Industrie und Forschung, Dornbirn, 2019, pp. 19–27.
K. Siebertz, D. van Bebber, and T. Hochkirchen, Statistische Versuchsplanung: Design of Experiments (DoE). Berlin: Springer, 2010.
K. K. Ikpambese and E. A. Lawrence, ‘Comparative Analysis of Multiple Linear Regression and Artificial Neural Network for Predicting Friction and Wear of Automotive Brake Pads Produced from Palm Kernel Shell’, Tribol. Ind., vol. 40, no. 4, pp. 565–573, Dec. 2018, doi: https://doi.org/10.24874/ti.2018.40.04.05.
S. Seabold and J. Perktold, ‘Statsmodels: Econometric and Statistical Modeling with Python’, p. 5, 2010.
A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis, ‘New globally convergent training scheme based on the resilient propagation algorithm’, Neurocomputing, vol. 64, pp. 253–270, Mar. 2005, doi:https://doi.org/10.1016/j.neucom.2004.11.016.
M. I. A. Lourakis, ‘A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar’, p. 6.
F. Burden and D. Winkler, ‘Bayesian Regularization of Neural Networks’, in Artificial Neural Networks, vol. 458, D. J. Livingstone, Ed. Totowa, NJ: Humana Press, 2008, pp. 23–42.
D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, ‘Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations’, Trans. ASABE, vol. 50, no. 3, pp. 885–900, 2007, doi: https://doi.org/10.13031/2013.23153.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH , ein Teil von Springer Nature
About this paper
Cite this paper
Bitrus, S., Velkavrh, I., Rigger, E. (2021). Applying an Adapted Data Mining Methodology (DMME) to a Tribological Optimisation Problem. In: Haber, P., Lampoltshammer, T., Mayr, M., Plankensteiner, K. (eds) Data Science – Analytics and Applications. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32182-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-658-32182-6_7
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-32181-9
Online ISBN: 978-3-658-32182-6
eBook Packages: Computer Science and Engineering (German Language)