Skip to main content

Applying an Adapted Data Mining Methodology (DMME) to a Tribological Optimisation Problem

Zusammenfassung

This work provides a guideline for a structural approach towards data mining projects in tribology. Due to the specifics of tribological processes, parts of the DMME methodology need to be refined. The refined data mining methodology is applied to an on-going data mining project in tribology aimed at predicting wear rate and coefficient of friction of nitrocarburised coatings. The applied adapted methodology provides an efficient framework for data generation, preparation and analysis. At the same time, it supports and guides interdisciplinary work between data scientists and tribologists.

Schlüsselwörter

  • tribology
  • data mining
  • DMME
  • methodology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-658-32182-6_7
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-658-32182-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. A. I. Vakis et al., ‘Modeling and simulation in tribology across scales: An overview’, Tribol. Int., vol. 125, pp. 169–199, Sep. 2018, doi:https://doi.org/10.1016/j.triboint.2018.02.005

  2. Y. Ji, J .Bao, Y. Yin, and C. Ma, ‘Applicationsof Artificial Intelligence in Tribology’,Recent Pat. Mech. Eng.,vol.9, no. 3,pp. 193–205, 2016, doi:https://doi.org/10.2174/2212797609666160714145845

  3. T. Kolodziejczyk, R. Toscano, S. Fouvry, and G. Morales-Espejel, ‘Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction’, Wear, vol. 268, no. 1–2, pp. 309–315, Jan. 2010, doi: https://doi.org/10.1016/j.wear.2009.08.016.

  4. I. Argatov, ‘Artificial Neural Networks (ANNs) as a Novel Modeling Technique in Tribology’, Front. Mech. Eng., vol. 5, May 2019, doi:https://doi.org/10.3389/fmech.2019.00030.

  5. D. Nowell and P. W. Nowell, ‘A machine learning approach to the prediction of fretting fatigue life’, Tribol. Int., vol. 141, p. 105913, Jan. 2020, doi: https://doi.org/10.1016/j.triboint.2019.105913.

  6. E. Ciulli, ‘Tribology and Industry: From the Origins to 4.0’, Front. Mech. Eng., vol. 5, Sep. 2019, doi: https://doi.org/10.3389/fmech.2019.00055.

  7. W. J. Lee, H. Wu, H. Yun, H. Kim, M. B. G. Jun, and J. W. Sutherland, ‘Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data’, Procedia CIRP, vol. 80, pp. 506–511, 2019, doi: https://doi.org/10.1016/j.procir.2018.12.019.

  8. X. Xu et al., ‘Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models’, Knowl.-Based Syst., p. 105324, Dec. 2019, doi: https://doi.org/10.1016/j.knosys.2019.105324.

  9. S. Bhaumik, S. D. Pathak, S. Dey, and S. Datta, ‘Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties’, Tribol. Int., vol. 140, p. 105813, Dec. 2019, doi: https://doi.org/10.1016/j.triboint.2019.06.006.

  10. A. Azevedo and M. F. Santos, ‘KDD, SEMMA and CRISP-DM: A Parallel Overview’, IADIS Eur. Conf. Data Min., pp. 182–185, 2008.

    Google Scholar 

  11. P. Chapman et al., ‘Step-by-step data mining guide’, SPSS Inc, vol. 1.0, p. 76, 2000.

    Google Scholar 

  12. H. Wiemer, L. Drowatzky, and S. Ihlenfeldt, ‘Data Mining Methodology for Engineering Applications (DMME)—A Holistic Extension to the CRISP-DM Model’, Appl. Sci., vol. 9, no. 12, p. 2407, Jun. 2019, doi: https://doi.org/10.3390/app9122407.

  13. ‘OMG SysML’. [Online]. Available: https://www.omgsysml.org/.

  14. S. Walch, P. Kranabitl, M. Bajzek, T. Wopelka, H. Hick, and S. Kolleger, ‘Model Based Systems Engineering in der Tribologie - Anwendung eines SysML-Tools in der Reib- und Verschleißanalyse von Antriebsstrangkomponenten’, in Tribologe in Industrie und Forschung, Dornbirn, 2019, pp. 19–27.

    Google Scholar 

  15. K. Siebertz, D. van Bebber, and T. Hochkirchen, Statistische Versuchsplanung: Design of Experiments (DoE). Berlin: Springer, 2010.

    Google Scholar 

  16. K. K. Ikpambese and E. A. Lawrence, ‘Comparative Analysis of Multiple Linear Regression and Artificial Neural Network for Predicting Friction and Wear of Automotive Brake Pads Produced from Palm Kernel Shell’, Tribol. Ind., vol. 40, no. 4, pp. 565–573, Dec. 2018, doi: https://doi.org/10.24874/ti.2018.40.04.05.

  17. S. Seabold and J. Perktold, ‘Statsmodels: Econometric and Statistical Modeling with Python’, p. 5, 2010.

    Google Scholar 

  18. A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis, ‘New globally convergent training scheme based on the resilient propagation algorithm’, Neurocomputing, vol. 64, pp. 253–270, Mar. 2005, doi:https://doi.org/10.1016/j.neucom.2004.11.016.

  19. M. I. A. Lourakis, ‘A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar’, p. 6.

    Google Scholar 

  20. F. Burden and D. Winkler, ‘Bayesian Regularization of Neural Networks’, in Artificial Neural Networks, vol. 458, D. J. Livingstone, Ed. Totowa, NJ: Humana Press, 2008, pp. 23–42.

    Google Scholar 

  21. D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, ‘Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations’, Trans. ASABE, vol. 50, no. 3, pp. 885–900, 2007, doi: https://doi.org/10.13031/2013.23153.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bitrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH , ein Teil von Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bitrus, S., Velkavrh, I., Rigger, E. (2021). Applying an Adapted Data Mining Methodology (DMME) to a Tribological Optimisation Problem. In: Haber, P., Lampoltshammer, T., Mayr, M., Plankensteiner, K. (eds) Data Science – Analytics and Applications. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32182-6_7

Download citation