Zusammenfassung
Topological data analysis (TDA) applies methods of topology in data analysis and found many applications in data science in the recent decade that go well beyond machine learning. TDA builds upon the observation that data often possesses a certain intrinsic shape such as the shape of a point cloud, the shape of a signal or the shape of a geometric object. Persistent homology is probably the most prominent tool in TDA that gives us the means to describe and quantify topological properties of these shapes.
In this paper, we give an overview of the basic concepts of persistent homology by interweaving intuitive explanations with the formal constructions of persistent homology. In order to illustrate the versatility of TDA and persistent homology we discuss three domains of applications, namely the analysis of signals and images, the analysis of geometric shapes and topological machine learning. With this paper we intend to contribute to the dissemination of TDA and illustrate their application in fields that received little recognition so far, like signal processing or CAD/CAM.
Schlüsselwörter
- topological data analysis
- persistenthomology
- shape
- kernel
- machine learning
- applications
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Literatur
H. Edelsbrunner and J. Harer, Computational Topology – An Introduction. American Mathematical Society, 2010, iSBN 978-0-8218-4925-5.
C. S. Pun, K. Xia, and S. X. Lee, “Persistent-homology-based machine learning and its applications–a survey,”SSRN Electronic Journal, 2018.
L. Wasserman, “Topological data analysis,” Annual Review of Statistics and Its Application, vol. 5, no. 1, pp. 501–532, 2018.
H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persistence and simplification,” Discrete Comp. Geom., vol. 28, no. 4, pp. 511–533, Nov. 2002.
C. Chen and M. Kerber, “Persistent homology computation with a twist,” in Proc. 27th Europ. Workshop on Comp. Geom. (EuroCG ’11), Mar. 2011
U. Bauer, M. Kerber, and J. Reininghaus, “Distributed computation of persistent homology,” in Proc. 16thWorkshopAlg. Eng. and Exp. (ALENEX ’14), Mar. 2014, pp. 31–38.
H. Wagner, C. Chen, and E. Vuc¸ini, “Efficient computation of persistent homology for cubical data,” in Topological Methods in Data Analysis and Visualization II, ser. Mathematics and Visualization. Springer-Verlag, 11 2012, pp. 91–106.
U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat-persistent homology algorithms tool box,”J. Symb. Comput., vol. 78, pp.76––90, Jan. 2017.
Stack overflow: Peak detection in a 2d array. [Online]. Available: https://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/47190183#47190183
D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams, ”Discrete Comp. Geom., vol. 37, no.1, pp.103–120, 2007.
U. Bauer and H. Edelsbrunner, “The morse theory of Čech and delaunay complexes, ”Transactions of the American Mathematical Society, vol. 369, no.5, pp. 3741–3762,2017.
S. Huber, “The topology of skeletons and offsets, ” in Proc. 34th Europ. Workshop on Comp. Geom. (EuroCG ’18), Mar. 2018.
M. Held and C. Spielberger, “Improved spiral high-speed machining of multiply-connected pockets, ”Comp. Geom. Theory & Appl., vol.11, no.3, pp. 346–357, 2014.
S. Huber,Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice. Shaker Verlag,Apr. 2012 ,iSBN 978-3-8440-0938-5.
J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multiscale kernel for topological machinelearning, ” in Proc. 2015 IEEE Conf. Comp. Vision & Pat. Rec. (CVPR ’15), Boston, MA, USA, Jun. 2015, pp. 4741–4748.
D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. ko,“Lipschitz functions haveLp-stable persistence, ”Found. Comput. Math., vol. 10, no. 2, pp. 127–139,2010.
P. Bubenik, “Statistical topological data analysis using persistence landscapes, ”Journal of Machine Learning Research, vol.16, pp. 77–102, Jan. 2015.
R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-akernel perspective , ”in Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 3070–3078.
C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl, “Deepl earning with topological signatures, ”inConf. Neural Inf. Proc. Sys., 2017.
G. E. Carlsson and R. B. Gabrielsson, “Topological approaches to deep learning,”CoRR, vol.abs/1811.01122,2018. [Online]. Available: https://arxiv.org/abs/1811.01122
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH , ein Teil von Springer Nature
About this paper
Cite this paper
Huber, S. (2021). Persistent Homology in Data Science. In: Haber, P., Lampoltshammer, T., Mayr, M., Plankensteiner, K. (eds) Data Science – Analytics and Applications. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32182-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-658-32182-6_13
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-32181-9
Online ISBN: 978-3-658-32182-6
eBook Packages: Computer Science and Engineering (German Language)