Skip to main content

Persistent Homology in Data Science

  • Conference paper
  • First Online:
Data Science – Analytics and Applications

Zusammenfassung

Topological data analysis (TDA) applies methods of topology in data analysis and found many applications in data science in the recent decade that go well beyond machine learning. TDA builds upon the observation that data often possesses a certain intrinsic shape such as the shape of a point cloud, the shape of a signal or the shape of a geometric object. Persistent homology is probably the most prominent tool in TDA that gives us the means to describe and quantify topological properties of these shapes.

In this paper, we give an overview of the basic concepts of persistent homology by interweaving intuitive explanations with the formal constructions of persistent homology. In order to illustrate the versatility of TDA and persistent homology we discuss three domains of applications, namely the analysis of signals and images, the analysis of geometric shapes and topological machine learning. With this paper we intend to contribute to the dissemination of TDA and illustrate their application in fields that received little recognition so far, like signal processing or CAD/CAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. H. Edelsbrunner and J. Harer, Computational Topology – An Introduction. American Mathematical Society, 2010, iSBN 978-0-8218-4925-5.

    Google Scholar 

  2. C. S. Pun, K. Xia, and S. X. Lee, “Persistent-homology-based machine learning and its applications–a survey,”SSRN Electronic Journal, 2018.

    Google Scholar 

  3. L. Wasserman, “Topological data analysis,” Annual Review of Statistics and Its Application, vol. 5, no. 1, pp. 501–532, 2018.

    Google Scholar 

  4. H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persistence and simplification,” Discrete Comp. Geom., vol. 28, no. 4, pp. 511–533, Nov. 2002.

    Google Scholar 

  5. C. Chen and M. Kerber, “Persistent homology computation with a twist,” in Proc. 27th Europ. Workshop on Comp. Geom. (EuroCG ’11), Mar. 2011

    Google Scholar 

  6. U. Bauer, M. Kerber, and J. Reininghaus, “Distributed computation of persistent homology,” in Proc. 16thWorkshopAlg. Eng. and Exp. (ALENEX ’14), Mar. 2014, pp. 31–38.

    Google Scholar 

  7. H. Wagner, C. Chen, and E. Vuc¸ini, “Efficient computation of persistent homology for cubical data,” in Topological Methods in Data Analysis and Visualization II, ser. Mathematics and Visualization. Springer-Verlag, 11 2012, pp. 91–106.

    Google Scholar 

  8. U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat-persistent homology algorithms tool box,”J. Symb. Comput., vol. 78, pp.76––90, Jan. 2017.

    Google Scholar 

  9. Stack overflow: Peak detection in a 2d array. [Online]. Available: https://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/47190183#47190183

  10. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence diagrams, ”Discrete Comp. Geom., vol. 37, no.1, pp.103–120, 2007.

    Google Scholar 

  11. U. Bauer and H. Edelsbrunner, “The morse theory of Čech and delaunay complexes, ”Transactions of the American Mathematical Society, vol. 369, no.5, pp. 3741–3762,2017.

    Google Scholar 

  12. S. Huber, “The topology of skeletons and offsets, ” in Proc. 34th Europ. Workshop on Comp. Geom. (EuroCG ’18), Mar. 2018.

    Google Scholar 

  13. M. Held and C. Spielberger, “Improved spiral high-speed machining of multiply-connected pockets, ”Comp. Geom. Theory & Appl., vol.11, no.3, pp. 346–357, 2014.

    Google Scholar 

  14. S. Huber,Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice. Shaker Verlag,Apr. 2012 ,iSBN 978-3-8440-0938-5.

    Google Scholar 

  15. J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A stable multiscale kernel for topological machinelearning, ” in Proc. 2015 IEEE Conf. Comp. Vision & Pat. Rec. (CVPR ’15), Boston, MA, USA, Jun. 2015, pp. 4741–4748.

    Google Scholar 

  16. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. ko,“Lipschitz functions haveLp-stable persistence, ”Found. Comput. Math., vol. 10, no. 2, pp. 127–139,2010.

    Google Scholar 

  17. P. Bubenik, “Statistical topological data analysis using persistence landscapes, ”Journal of Machine Learning Research, vol.16, pp. 77–102, Jan. 2015.

    Google Scholar 

  18. R. Kwitt, S. Huber, M. Niethammer, W. Lin, and U. Bauer, “Statistical topological data analysis-akernel perspective , ”in Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 3070–3078.

    Google Scholar 

  19. C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl, “Deepl earning with topological signatures, ”inConf. Neural Inf. Proc. Sys., 2017.

    Google Scholar 

  20. G. E. Carlsson and R. B. Gabrielsson, “Topological approaches to deep learning,”CoRR, vol.abs/1811.01122,2018. [Online]. Available: https://arxiv.org/abs/1811.01122

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH , ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huber, S. (2021). Persistent Homology in Data Science. In: Haber, P., Lampoltshammer, T., Mayr, M., Plankensteiner, K. (eds) Data Science – Analytics and Applications. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32182-6_13

Download citation

Publish with us

Policies and ethics