Skip to main content

Messtechnik der Terramechanik

  • Chapter
  • First Online:
Terramechanik und Geländefahrzeuge

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 301 Accesses

Zusammenfassung

In den vorangegangenen Kapiteln dieses Buches wurden wiederholt verschiedene Messmethoden und Messgeräte beschrieben. Bei der Erörterung spezifischer Aufgaben der Terramechanik sollte der Leser sowohl mit den verwendeten Methoden als auch mit der Laborausrüstung vertraut gemacht werden. In den meisten Fällen hatten diese Beschreibungen jedoch einen einleitenden, theoretischen Charakter. Dieses Kapitel ist eine Synthese von Wissen auf dem Gebiet der Messmethoden und -geräte der Terramechanik und zielt darauf ab, die Informationen zu organisieren, zu systematisieren und zu erweitern. Es enthält Beschreibungen von eher technischen und handhabungstechnischen Merkmalen sowie Details zur Konstruktion und den Parametern der einzelnen Sensoren, Kalibrierungsmethoden, Messverfahren usw. Ein Ziel dieser Präsentation der terramechanischen Forschungsmethoden ist auch die Inspiration für eigene Versuche und Experimente beim Entwurf von Messgeräten. Obwohl ein wesentlicher Teil der in der Terramechanik verwendeten Messgeräte handelsüblich ist, sollte bekannt sein, dass einige Sensoren nicht einfach erworben werden können, sondern dass sie selbst hergestellt oder zumindest an die jeweiligen Einsatzbedingungen angepasst werden müssen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Hüsemann, T., & Goertz, H. (2005). Der mechatronische Reifen zur Online-Bestimmung der Kräfte im Radaufstandspunkt. VDI Berichte, 1912, 119–152.

    Google Scholar 

  2. Glenn Guthrie, A., Botha, T. R., & Els, P. S. (2017). 3D contact patch measurement inside rolling tyres. Journal of Terramechanics, 69, 13–21.

    Article  Google Scholar 

  3. McAllister, M. (1979). A rig for measuring the forces on a towed wheel. Journal of Agricultural Engineering Research, 24(3), 259–265.

    Article  Google Scholar 

  4. Apfelbeck, S., Kuß, S., Rebele, B., & Schäfer, B. (2011). A systematic approach to reliably characterize soils based on Bevameter testing. Journal of Terramechanics, 48(2011), 360–371.

    Article  Google Scholar 

  5. Kuchler, M., & Schrupp, R. (2002). Mehrkomponenten-Motorradmessnabe. VDI-FVT Jahrbuch 2002 (S. 91–119). VDI Verlag.

    Google Scholar 

  6. Longoria, R. G., Brushaber, R., & Simms, A. (2019). An in-wheel sensor for monitoring tire-terrain interaction: Development and laboratory testing. Journal of Terramechanics, 82(2019), 43–52.

    Article  Google Scholar 

  7. Pytka, J. A. (2008). A wheel dynamometer for off-road vehicle testing (SAE Technical Paper Series, Paper No. 2008-01-0482).

    Google Scholar 

  8. Pytka, J., Józwik, J., Budzyński, P., Łyszczyk, T., Tofil, A., Gnapowski, E., & Laskowski, J. (2019). Wheel dynamometer system for aircraft landing gear testing. Measurement, 148, 106918.

    Article  Google Scholar 

  9. Pytka, J., Śliczniak, T., Kasprzak, P., & Gnapowski, E. (2018). Tyre-soil interface determination by photogrammetric method IOP.

    Google Scholar 

  10. Botha, T., Johnson, D., Els, S., & Shoop, S. (2019). Real time rut profile measurement in varying terrain types using digital image correlation. Journal of Terramechanics, 82(2019), 53–61.

    Article  Google Scholar 

  11. Abu-Hamdeh, N. H., & Reeder, R. C. (2003). Measuring and predicting stress distribution under tractive devices in undisturbed soils. Biosystems Engineering, 85(4), 493–502.

    Article  Google Scholar 

  12. Akker van den, J. (1988). Model computation of subsoil stress distribution and compaction due to field traffic (Report No. 23). Inst. Land and Water Manag. Res.

    Google Scholar 

  13. Arvidsson, J., & Ristic, S. (1996). Soil stress and compaction effects for four tractor types. Journal of Terramechanics, 33(5), 223–232.

    Article  Google Scholar 

  14. Bakker, D. M., Harris, H. D., & Wong, K. Y. (1995). Measurements of stress paths under agricultural vehicles and their interpretation in critical state space. Journal of Agricultural Engineering Research, 61, 247–260.

    Article  Google Scholar 

  15. Blackwell, P. S., & Soane, B. D. (1978). Deformable spherical device to measure stresses within field soils. Journal of Terramechanics, 15(4), 207–222.

    Article  Google Scholar 

  16. Bolling, I. (1985). How to predict soil compaction from agricultural tires. Journal of Terramechanics, 22(4), 205–223.

    Article  Google Scholar 

  17. Harris, H. D., & Bakker, D. M. (1994). A soil stress transducer for measuring in situ soil stresses. Soil&Tillage Research, 29, 35–48.

    Google Scholar 

  18. Horn, R., Johnson, C., Semmel, H., Schafer, R., & Lebert, M. (1992). Räumliche Spannungsmessungen mit dem Stress State Transducer (SST) im ungesättigten aggregierten Boden – Theoretische Betrachtungen und erste Ergebnisse. Zeitschrift für Pflanzenernährung und Bodenkunde, 155, 269–274.

    Article  Google Scholar 

  19. Kirby, J. M. (1999). Soil stress measurement: Part I and II. Journal of Agricultural Engineering Research, 72, 151–160 and 73, 141–150.

    Google Scholar 

  20. Lamandé, M., & Schjønning, P. (2011). Transmission of vertical stress in a real soil profile. Part I. Site description, evaluation of the Séhne model, and the effect of topsoil tillage. Soil and Tillage Research, 114, 57–70.

    Article  Google Scholar 

  21. Lamandé, M., Keller, T., Berisso, F., Stettler, M., & Schjønning, P. (2015). Accuracy of soil stress measurements as affected by transducer dimensions and shape. Soil and Tillage Research, 145, 72–77.

    Article  Google Scholar 

  22. Pytka, J. A. (2009). Design consideration and calibration of pressure transducer for soil stress measurements. Journal of Terramechanics, 46, 241–249.

    Article  Google Scholar 

  23. Raper, R.L., Bailey, A.C., Burt, E.C., Way, T.R., Liberati, P. (1995) The effects of reduced inflation pressure on soil-tire interface stresses and soil strength. Journal of Terramechanics 32(1): 43–51

    Google Scholar 

  24. Horn, R., & Lebert, M. (1994). Soil compactability and compressibility. In B. D. Soane & C. Van Ouwerkerk (Hrsg.), Soil compaction in crop production (S. 41–96). Elsevier Science Publishing.

    Google Scholar 

  25. Verma, B. P., Bailey, A. C., Schafer, R. L., & Futral, J. G. (1976). A pressure transducer in soil compaction study. Transactions of the ASAE, 1976(442), 447.

    Google Scholar 

  26. Pytka, J. A., & Konstankiewicz, K. (2002). A new optical method for soil stress and strain investigation. Soil and Tillage Research, 65, 243–251.

    Article  Google Scholar 

  27. Vishay Measurements Group, Inc. The Technical Staff of: Strain gage based transducers. Their design and construction Raleigh.

    Google Scholar 

  28. Vishay Measurements Group, Inc. The Technical Staff of: Technical Note TN 510.

    Google Scholar 

  29. Kitchin, C., & Counts, L. (1992). Instrumentation amplifier application guide. Analog Devices, Inc.

    Google Scholar 

  30. Pytka, J. A. (2010). Determination of snow stresses under vehicle loads. Cold Regions Science and Technology, 60, 137–145.

    Article  Google Scholar 

  31. Nichols, T. A., Bailey, A. C., Johnson, C. E., & Grisso, R. D. (1987). A stress state transducer for soil. Transactions of the ASAE, 30(5), 1237–1241.

    Article  Google Scholar 

  32. Qun, Y., Jie, S., & Xianbin, D. (1992). Camera tracing and image processing system for soil deformation. Journal of Terramechanics, 29(4/5), 423–431.

    Article  Google Scholar 

  33. Othitin, A. A., Lipiec, J., Tarkiewicz, S., & Sudakov, A. V. (1991). Deformation of silty loam under the tractor tyre. Soil&Tillage Research, 19, 187–195.

    Google Scholar 

  34. Kühner, S., Horn, R., Baumgartl, T., Raper, R., Bailey, A., & Johnson, C. (1993). Stresses and particle displacement during wheeling. ASAE meeting presentation, no 93-1092.

    Google Scholar 

  35. Pytka, J. A., & Dąbrowski, J. (2001). Determination of the stress-strain relationship for sandy soil in field experiments. Journal of Terramechanics, 38, 185–200.

    Article  Google Scholar 

  36. Dudziński, P. (2019). Method for predicting dynamic shear strength in soils. Part I: Proposal for a new criterion. Journal of Terramechanics, 86, 31–37.

    Article  Google Scholar 

  37. Barz, D., & Drews, R. (2008). Kompatible Messsysteme – Unterschiedliche Fahrdynamiksysteme synchron messen. ATZelektronik, 04/2008, Jahrgang 3

    Google Scholar 

  38. Coutermarsh, B. A., & Shoop, S. A. (2009). Tire slip-angle force measurements on winter surfaces. Journal of Terramechanics, 46(2009), 157–163.

    Article  Google Scholar 

  39. Shoop, S. A., Young, B., Alger, R., & Davis, J. (1994). Effect of test method on winter traction measurements. Journal of Terramechanics, 31(3), 153–161.

    Article  Google Scholar 

  40. Witzel, P. (2018). The Hohenheim tyre model: A validated approach for the simulation of high volume tyres – Part I: Model structure and parameterisation. Journal of Terramechanics, 75, 3–14.

    Article  Google Scholar 

  41. Lamandé, M., & Schjønning, P. (2011). Transmission of vertical stress in a real soil profile. Part II. Effect of tyre size, inflation pressure and wheel load. Soil and Tillage Research, 114, 71–77.

    Article  Google Scholar 

  42. Pytka, J. (2001). Loads effect upon soil stress and deformation state in structured and disturbed sandy loam for two tillage treatments. Soil&Tillage Research, 59(2001), 13–25.

    Google Scholar 

  43. Pytka, J., Tarkowski, P., Fijałkowski, S., Budzyński, P., Dąbrowski, J., Kupicz, W., & Pytka, P. (2011). An Instrumented Vehicle for Off-Road Dynamics Testing Journal of Terramechanics, 48(5), 384–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pytka, J. (2024). Messtechnik der Terramechanik. In: Terramechanik und Geländefahrzeuge. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32013-3_6

Download citation

Publish with us

Policies and ethics