Skip to main content

Mobilität im Gelände

  • Chapter
  • First Online:
Terramechanik und Geländefahrzeuge

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 284 Accesses

Zusammenfassung

Bei praktischen Problemen im Zusammenhang mit dem Einsatz von Fahrzeugen und Maschinen im Gelände werden oft Methoden eingesetzt, die auf einfachen Beobachtungen oder Messungen bzw. Datentabellen beruhen. So kann schnell und einfach festgestellt werden, ob das Fahren überhaupt möglich oder unter dem Gesichtspunkt des Schutzes des Bodenökosystems wirtschaftlich oder vorteilhaft ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Digital Geographic Information Exchange Standard (DIGEST). (1998). STANAG 7074, 2. Aufl., Headquarters, Department of US Army.

    Google Scholar 

  2. Military Geographic Documentation – Terrain Analysis AgeoP-1 (A). (1999). STANAG 3992, 2. Aufl., Headquarters, Department of US Army.

    Google Scholar 

  3. Podkonieczny, K., & Mościcka, A. (2018). The influence of the shape and size of the cell on developing military passability maps. International Journal of Geo-Information, 7, 261.

    Article  Google Scholar 

  4. Ciobotaru, T. (2000). Semi-empiric algorithm for assessment of the vehicle mobility. Leonardo Electronic Journal of Practices and Technologies, 15, 19–30.

    Google Scholar 

  5. MacLaurin, B. (2007). Comparing the NRMM (VCI), MMP and VLCI traction models. Journal of Terramechanics, 44, 43–51.

    Article  Google Scholar 

  6. Hetherington, J. G. (2001). The applicability of the MMP concept in specifying of-road mobility for wheeled and tracked vehicles. Journal of Terramechanics, 38, 63–70.

    Article  Google Scholar 

  7. Podkonieczny, K. (2017). Automatic military passability map generation system. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017, S. 285–292.

    Google Scholar 

  8. Pokonieczny, K., & Rybansky, M. (2018). Method of developing the maps of passability for unmanned ground vehicles. IOP Conference Series: Earth and Environmental Science, 169, 012027.

    Google Scholar 

  9. Podkonieczny, K. (2018). Use of a multilayer perceptron to automate terrain assessment for the needs of the armed forces. International Journal of Geo-Information, 7, 430.

    Article  Google Scholar 

  10. Rybansky, M., Dohnal, F., Hoskova-Mayerova, S., & Svatonova, H. (2018). The impact of drainage on terrain UGV movement. IOP Conference Series: Earth and Environmental Science, 169, 012021. https://doi.org/10.1088/1755-1315/169/1/012021

    Article  Google Scholar 

  11. Hirschman, D. (2014). No runway? No problem. AOPA Pilot, 3(58), 65.

    Google Scholar 

  12. Landsberg, B. (2016). Soft field, soft thinking. Who is resonsible for a takeoff gone wrong? AOPA Pilot, 9, 20.

    Google Scholar 

  13. Landsberg, B. (2017). Margins to live by. Beautiful places, challenging runways. AOPA Pilot, 8, 80–84.

    Google Scholar 

  14. Mauch, H., & Kutschke, E. (2016). Tiefe Boden – hohe Kunst? Fliegermagazin, 1, 64–67.

    Google Scholar 

  15. CAA. (2005). Report on the light aviation airports study group. Civil Aviation Authorities, UK (LAASG).

    Google Scholar 

  16. Shoop, S. A., Diemand, D., Wieder, W. L., Mason, G., & Seman P. M. (2008). Opportune landing sites program (Technical report, ERDC/CRREL TR-08-17).

    Google Scholar 

  17. Pytka, J. (2014). Identification of rolling resistance coefficients for aircraft tires on unsurfaced airfields. Journal of Aircraft, 51(2), 353–360.

    Article  Google Scholar 

  18. Pytka, J., Tarkowski, P., Budzyński, P., & Józwik, J. (2017). Method for testing and evaluation of grassy runway surface. Journal of Aircraft, 54(1), 229–234.

    Article  Google Scholar 

  19. Anderson, M. G. (1983). On the applicability of soil Water finite difference models to operational trafficability models. Journal of Terramechanics, 20(3–4), 139–152.

    Article  Google Scholar 

  20. Pytka, J., Budzynski, P., Tarkowski, P., & Piaskowski, M. (2016). A portable wheel tester for tyre-road friction and rolling resistance determination. https://doi.org/10.1088/1757-899X/148/1/012025

  21. Pytka, J., Budzyński, P., Kamiński, M., Łyszczyk, T., & Józwik, J. (2019). Application of the TDR moisture sensor for terramechanical research. Sensors, 19(9), 2116.

    Article  Google Scholar 

  22. Pytka, J. A. (2013). Dynamics of wheel-soil systems. A soil stress and deformation state based approach. Taylor&Francis. Chap. 6.

    Google Scholar 

  23. Larmine, J. C. (1992). Modifications to the mean maximum pressure system. Journal of Terramechanics, 29(2), 239–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pytka, J. (2024). Mobilität im Gelände. In: Terramechanik und Geländefahrzeuge. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32013-3_5

Download citation

Publish with us

Policies and ethics