Skip to main content

Spannung und Verformung im Boden unter fahrenden Fahrzeugen und Maschinen

  • Chapter
  • First Online:
Terramechanik und Geländefahrzeuge

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 292 Accesses

Zusammenfassung

Messungen der Bodenspannungen und Verformungszustände in situ haben vor 50 und vielleicht mehr Jahren begonnen. Eine Reihe von veröffentlichten Artikeln liefern Archivdaten, wertvolle Ergebnisse und Einzelheiten der Instrumentierung. Aber vorläufig scheint es, als wären wir weit von der Standardisierung entfernt, das Thema erfordert noch viel Forschung. Methodische Probleme, unbewiesene Zuverlässigkeit von Messungen mit Dehnungsmessstreifen oder hydraulischen Wandlern, Bodenstrukturstörungen bei der Installation von Wandlern, Auswirkungen zahlreicher Einflussfaktoren auf gemessene Spannungswerte machen den Anwendungsbereich zu einem echten Minenfeld und jeder Schritt sollte mit der gebotenen Vorsicht durchgeführt werden. Nach Ansicht des Verfassers wäre eine Lösung ein Vergleich der experimentellen Ergebnisse, die mit klassischen Methoden und mit neuen Methoden erzielt werden. Dem würde eine detaillierte Untersuchung der mechanischen Ähnlichkeit der Messmethoden und der resultierenden Daten vorausgehen, und wie diese im Sinne der Mechanik unterschieden werden können. Das, wonach wir wirklich suchen, ist eine allgemeine Theorie für die Bodenmechanik, die das Verhalten eines bestimmten Bodens unter allen Bedingungen beschreibt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Verma, B. P., Bailey, A. C., Schafer, R. L., & Futral, J. G. (1976). A pressure transducer in soil compaction study. Transactions of the ASAE, 1976(442), 447.

    Google Scholar 

  2. Cooper, A. W., Vanden Berg, G. E., McColly, H. F., & Erickson, A. E. (1957). Strain gage cell measures soil stresses. Agricultural Engineering, 232(April), 235.

    Google Scholar 

  3. Nichols, T. A., Bailey, A. C., Johnson, C. E., & Grisso, R. D. (1987). A stress state transducer for soil. Transsactions of the ASAE, 30(5), 1237–1241.

    Article  Google Scholar 

  4. Raper, R. L., Bailey, A. C., Burt, E. C., Way, T. R., & Liberati, P. (1995). The effects of reduced inflation pressure on soil – Tire interface stresses and soil strength. Journal of Terramechanics, 32(1), 43–51.

    Article  Google Scholar 

  5. Arvidsson, J., & Keller, T. (2007). Soil stress as affected by wheel load and tyre inflation pressure. Soil and Tillage Research, 96, 284–291.

    Article  Google Scholar 

  6. Blackwell, J., Horn, R., Jayawardane, N. S., White, R., & Blackwell, P. S. (1989). Vertical stress distribution under tractor wheeling in a partially deep loosened typic paleustalf. Soil and Tillage Research, 13, 1–12.

    Article  Google Scholar 

  7. Harris, H. D., & Bakker, D. M. (1994). A soil stress transducer for measuring in situ soil stresses. Soil and Tillage Research, 29, 35–48.

    Article  Google Scholar 

  8. Horn, R., Blackwell, P. S., & White, R. (1989). The effect of speed of wheeling on soil stresses, rut depth and soil physical properties in an ameliorated transitional red-brown earth. Soil and Tillage Research, 13, 35–364.

    Article  Google Scholar 

  9. Horn, R., Johnson, C., Semmel, H., Schafer, R., & Lebert, M. (1992). Räumliche Spannungsmessungen mit dem Stress State Transducer (SST) in ungesattigten aggregierten Boden – theoretische Betrachtungen und erste Ergebnisse. Z. Pflanzenernähr. Bodenk., 155, 269–274.

    Article  Google Scholar 

  10. Horn, R. (1993). Mechanical properties of structured unsatured soils. Soil Technology, 6, 47–75.

    Google Scholar 

  11. Horn, R., & Lebert, M. (1994). Soil compactability and compressibility. In B. D. Soane & C. Van Ouwerkerk (Hrsg.), Soil compaction in crop production (S. 41–96). Elsevier Science Publishing.

    Google Scholar 

  12. Horn, R. (2003). Stress-strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma, 116, 77–88.

    Article  Google Scholar 

  13. Keller, T., Trautner, A., & Arvidsson, J. (2002). Stress distribution and soil displacement under a rubber-tracked and a wheeled tractor during ploughing, both on-land and within furrows. Soil and Tillage Research, 68, 39–47.

    Article  Google Scholar 

  14. Keller, T., & Arvidsson, J. (2004). Technical solutions to reduce the risk of subsoil compaction. Soil and Tillage Research, 79, 171–205.

    Article  Google Scholar 

  15. Keller, T. (2005). A model to predict the contact area and the distribution of vertical stress below agricultural tyres from readily-available tyre parameters. Biosystems Engineering, 92, 85–96.

    Article  Google Scholar 

  16. Keller, T., Défossez, P., Weisskopf, P., Arvidsson, J., & Richard, G. (2007). SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil and Tillage Research, 93, 391–411.

    Article  Google Scholar 

  17. Keller, T., Lamandé, M., Schjønning, P., & Dexter, A. R. (2011). Analysis of soil compression curves from uniaxial confined compression tests. Geoderma, 163, 13–23.

    Article  Google Scholar 

  18. Keller, T., Arvidsson, J., Schjønning, P., Lamandé, M., Stettler, M., & Weisskopf, P. (2012). In situ subsoil stress-strain behavior in relation to soil precompression stress. Soil Science, 177, 490–497.

    Article  Google Scholar 

  19. Kirby, J. M. (1999a). Soil stress measurements: Part I: Transducer in a uniform stress field. Journal of Agricultural Engineering Research, 72, 151–160.

    Article  Google Scholar 

  20. Kirby, J. M. (1999b). Soil stress measurements: Part II: Transducer under a plate. Journal of Agricultural Engineering Research, 72, 151–160.

    Article  Google Scholar 

  21. Lamandé, M., & Schjønning, P. (2011a). Transmission of vertical stress in a real soil profile. Part I. Site description, evaluation of the Séhne model, and the effect of topsoil tillage. Soil and Tillage Research, 114, 57–70.

    Article  Google Scholar 

  22. Lamandé, M., & Schjønning, P. (2011b). Transmission of vertical stress in a real soil profile. Part II. Effect of tyre size, inflation pressure and wheel load. Soil and Tillage Research, 114, 71–77.

    Article  Google Scholar 

  23. Lamandé, M., & Schjønning, P. (2011c). Transmission of vertical stress in a real soil profile. Part III. Effect of soil water content. Soil and Tillage Research, 114, 78–85.

    Article  Google Scholar 

  24. Lamandé, M., Keller, T., Berisso, F., Stettler, M., & Schjønning, P. (2015). Accuracy of soil stress measurements as affected by transducer dimensions and shape. Soil and Tillage Research, 145, 72–77.

    Article  Google Scholar 

  25. Pytka, J. A., & Dąbrowski, J. (2001). Determination of the stress-strain relationship for sandy soil in field experiments. Journal of Terramechanics, 38, 185–200.

    Article  Google Scholar 

  26. Pytka, J. A., & Konstankiewicz, K. (2002). A new optical method for soil stress and strain investigation. Soil and Tillage Research, 65, 243–251.

    Article  Google Scholar 

  27. Pytka, J., Tarkowski, P., Dąbrowski, J., Bartler, S., Kalinowski, M., & Konstankiewicz, K. (2004). Soil stress and deformation determination under a landing airplane on an unsurfaced airfield. Journal of Terramechanics, 40, 255–269.

    Article  Google Scholar 

  28. Pytka, J. (2005). Effects of repeated rolling of agricultural tractors on soil stress and deformation state in sand and loess. Soil and Tillage Research, 82(77), 88.

    Google Scholar 

  29. Pytka, J., Dąbrowski, J., Zając, M., & Tarkowski, P. (2006). Effects of reduced inflation pressure and vehicle loading on off-road traction and soil stress and deformation state. Journal of Terramechanics, 43, 469–485.

    Article  Google Scholar 

  30. Pytka, J. (2009). Determining and analysing the stress state under wheeled vehicles loads. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(D2), 233–253.

    Google Scholar 

  31. Pytka, J. A. (2009). Design considerations and calibration of stress transducers for soil. Journal of Terramechanics, 46, 241–249.

    Article  Google Scholar 

  32. Pytka, J. (2010). Determination of snow stresses under vehicle loads. Cold Regions Science and Technology, 60, 137–145.

    Article  Google Scholar 

  33. Pytka, J. A. (2013). Dynamics of wheel-soil systems: A soil stress and deformation-based approach (Ground Vehicle Engineering Series). CRC Press/Taylor and Francis Group.

    Google Scholar 

  34. Schjønning, P., & Lamandé, M. (2010). A note on the vertical stresses near the soil-tyre interface. Soil and Tillage Research, 108, 77–82.

    Article  Google Scholar 

  35. Wiermann, C., Way, T. R., Horn, R., Bailey, A. C., & Burt, E. C. (1999). Effect of various dynamic loads on stress and strain behavior of a Norfolk sandy loam. Soil and Tillage Research, 50, 127–135.

    Article  Google Scholar 

  36. Wiermann, C., Werner, D., Horn, R., Rostek, J., & Werner, B. (2000). Stress/strain processes in a structured unsaturated silty loam Luvisol under different tillage treatments in Germany. Soil and Tillage Research, 53, 117–128.

    Article  Google Scholar 

  37. Dąbrowski, J. (2001). Effect of rubber pads on tractive performance of tracked vehicles. PhD dissertation, Mil. Inst. Auto. Arm. Techn. Sulejówek

    Google Scholar 

  38. Bakker, D. M., Harris, H. D., & Wong, K. Y. (1995). Measurements of stress paths under agricultural vehicles and their interpretation in critical state space. Journal of Agricultural Engineering Research, 61, 247–260.

    Article  Google Scholar 

  39. Geischeder, R. (2011). Bodenbelastung und Bodenbeanspruchung unterschiedlicher Fahrwerkskonfigurationen. Dokrotarbeit, Technische Universität München

    Google Scholar 

  40. Arvidsson, J., & Ristic, S. (1996). Soil stress and compaction effects for four tractor types. Journal of Terramechanics, 33(5), 223–232.

    Article  Google Scholar 

  41. Ansorge, D., & Godwin, R. J. (2010). Soil density increases resulting from alternative tire and rubber track configurations in laboratory and field conditions. In A. P. Dedousis & T. Bartzanas (Hrsg.), Soil engineering, soil biology (Bd. 20, S. 81–90). Springer Verlag.

    Chapter  Google Scholar 

  42. Rowland, D. (1989). Tracked vehicle ground pressure and its effect on soft ground performance. Proceedings of 4th international conference of the ISTVS (S. 353–384).

    Google Scholar 

  43. Hetherington, J. G., & Littleton, I. (1987). The role of mean maximum pressure in specifying cross-country mobility for armored fighting vehicle design. Journal of Terramechanics, 24, 263–280.

    Article  Google Scholar 

  44. Hetherington, J. G., & White, J. N. (2002). An investigation of pressure under wheeled vehicles. Journal of Terramechanics, 39, 85–93.

    Article  Google Scholar 

  45. van den Akker, J. (1988). Model computation of subsoil stress distribution and compaction due to field traffic. Inst. Land’n Water Management Research, Wageningen, The Netherlands, Report No. 23

    Google Scholar 

  46. van den Akker, J. J. H. (2004). SOCOMO, a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil and Tillage Research, 79, 113–127.

    Article  Google Scholar 

  47. Schjønning, P., Lamande, M., Tøgersen, F. A., Arvidsson, J., & Keller, T. (2008). Modelling effects of tyre inflation pressure on the stress distribution near the soil-tyre interface. Biosystems Engineering, 99(2008), 119–133.

    Article  Google Scholar 

  48. Schjønning, P., van den Akker, J. J. H., Keller, T., Greve, M. H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., & Breuning- Madsen, H. (2015a). Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction – A European perspective. Advances in Agronomy, 133, 183–237.

    Article  Google Scholar 

  49. Schjønning, P., Stettler, M., Keller, T., Lassen, P., & Lamandé, M. (2015). Predicted tyre-soil interface area and vertical stress distribution based on loading characteristics. Soil and Tillage Research, 152, 52–66.

    Article  Google Scholar 

  50. Diserens, E., & Steinmann, G. (2002). Calculation of pressure distribution in moist arable soils in eastern Switzerland: A simple model approach for the practice. In L. Vulliet, L. Laloui, & B. Schrefler (Hrsg.), Environmental Geomechanics – Monte Verità 2002 (S. 413–421). EPFL Press.

    Google Scholar 

  51. Diserens, E., & Steinmann, G. (2005). TASC – Eine PC-Anwendung zur Vorbeugung von Schadverdichtungen. AGRAR Forschung, 12(1), 22–27.

    Google Scholar 

  52. Söhne, W. (1953). Druckverteilung im Boden und Bodenformung unter Schlepperreifen (Pressure distribution in the soil and soil deformation under tractor tyres). Grundlagen der Landtechnik, 5, 49–63.

    Google Scholar 

  53. de Lima, R. P., da Silva, A. R., & da Silva, Á. P. (2020). An R package for simulation of soil compaction induced by 2 agricultural field traffic. Soil and Tillage Research, 206, 10482.

    Google Scholar 

  54. Bailey, A. C., Raper, R. L., Way, T. R., Burt, E. C., & Johnson, C. E. (1996). Soil stresses under a tractor tire at various loads and inflation pressures. Journal of Terramechanics, 33(1), 1–11.

    Google Scholar 

  55. Way, T. R., Johnson, C. E., Bailey, A. C., Raper, R. L., & Burt, E. C. (1996). Soil stress state orientation beneath a tire at various loads and inflation pressures. Journal of Terramechanics, 33(4), 185–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pytka, J. (2024). Spannung und Verformung im Boden unter fahrenden Fahrzeugen und Maschinen. In: Terramechanik und Geländefahrzeuge. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32013-3_4

Download citation

Publish with us

Policies and ethics