Skip to main content

Der Boden

  • Chapter
  • First Online:
Terramechanik und Geländefahrzeuge

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 326 Accesses

Zusammenfassung

Der Boden ist eine poröse Oberflache der Erde und besteht aus drei Phasen: fest, flüssig und gasförmig. Er wurde durch verschiedene Prozesse in Tausenden von Jahren geformt, der häufigste davon ist die Verwitterung. Das Rohmaterial für diese Prozesse ist ein Ausgangsgestein, entweder ein solider Fels oder ein lockeres Sediment. In der primären Bodenbildung bewirkt die jahrelange Einwirkung von Wind, Sonne und Niederschlägen unter verschiedenen Temperaturen, dass das Ausgangsgestein physikalisch und chemisch in immer kleinere Teile zerlegt wird. In der Vergrößerung unter einer Lupe sieht der Boden wie ein komplexes Gebilde aus, in dem mehrere natürliche physikalische, chemische und thermische Prozesse ablaufen, die die Veränderungen physikalischer Bodeneigenschaften verursachen. Die mineralischen Bestandteilen des Bodens, die aus Körnern verschiedener Größen und Formen bestehen, bilden Strukturen mit Poren. Die Bodenart beschreibt den Boden in Bezug auf die Korngrößenzusammensetzung der mineralischen Bodenteile (Körnen). Davon geht eine primäre Klassifikation der Böden aus, in der die nachfolgenden Bodenarten unterschieden werden: Sand, Schluff, Ton und Lehm. Bei der sekundären Bodenbildung geht es überwiegend um verschiedene Vorgänge, die die Humusbildung beeinflussen, wie z. B. Vergleyung oder Pseudovergleyung oder Auswaschung von Bodenbestandteilen in tiefere Schichten. Unterschiedliche Erscheinungsformen von Böden, die sich in Form von Bodenhorizonten zeigen (Abb. 2.1), werden als Bodentypen bezeichnet und werden weltweit in der Bodenklassifikation bzw. der Bodensystematik nach verschiedenen Systemen klassifiziert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Pytka, J. (2016). Dynamics of wheel – Soil systems. A soil stress and deformation based approach. CRC Press Taylor&Francis Group.

    Book  Google Scholar 

  2. Wawer, R., Nowocień, E., & Łopatka, P. (2016). An approach to dynamic trafficability mapping as a component of battle management systems. A method for determining soil trafficability at the strategic level. Conference Proceedings, „Soil trafficability – challenges for soil and vehicles“ Tart, Estonia.

    Google Scholar 

  3. Bachmann, J., Horn, R., & Pets, S. (2014). Hartge/Horn: Einführung in die Bodenphysik. Schweizerbart Verlag.

    Google Scholar 

  4. Mitchell, G. J. (1976). Rheology of gels. Journal of Texture Studies, 7(3), 313–339.

    Google Scholar 

  5. Pytka, J., Bydzyński, P., Kamiński, M., Łyszczyk, T., & Józwik, J. (2019). Application of the TDR soil moisture sensor for terramechanical research. Sensors, 19(9), 2116.

    Article  Google Scholar 

  6. Shoop, S. A. (1993). Thawing soil strength measurements for predicting vehicle performance. Journal of Terramechanics, 30(6), 405–418.

    Article  Google Scholar 

  7. Huber, M. (1903). Specific work of strain as a measure of material effort. Towarzystwo Politechniczne, Czas. Techniczne, Lwów.

    Google Scholar 

  8. Jaeger, J. C., & Cook, N. G. W. (1969). Fundamentals of rock mechanics. Wiley.

    Google Scholar 

  9. Kezdi, A. (1966). Grundlagen einer allgemeinen Bodenphysik. VDJ-Zeitschrift, 108(5), 161–166.

    Google Scholar 

  10. Taylor, D. W. (1948). Fundamentals of soil mechanics. Wiley.

    Book  Google Scholar 

  11. Konstankiewicz, K., & Pytka, J. (2008). Soil engineering. In W. Chesworth (Hrsg.), Encyclopedia of soil science. Springer.

    Google Scholar 

  12. Pukos, A., & Walczak, R. (1973). Podstawy reoretyczne badania właściwości mechanicznych gleb (Grundlagen für die Forschung mechanischen Eigenschaften des Bodens), Problemy Agrofizyki Nr 7, Wydawnictwo Polskiej Akademii Nauk.

    Google Scholar 

  13. Pukos, A. (1987). A size of elementary deformation of soil. ZPPNR PAN( in English).

    Google Scholar 

  14. Boussinesq, J. (1885). Appliction des potentieles à l’étude de l’équilibre et du movement des solides elastique.

    Google Scholar 

  15. Frohlich, K. (1934). Druckverteilung im Baugrunde. Julius Springer.

    Book  Google Scholar 

  16. Akker van den, J. J. H. (2004). SOCOMO: A soil compaction modelt o calculate soil stresses and the subsoil carrying capacity. Soil&Tillage Research, 79(1), 113–127.

    Google Scholar 

  17. Cottrell, A. H. (1964). The mechanical properties of matter. Wiley.

    Google Scholar 

  18. Bishop, A. W., & Henkel, D. J. (1957). The measurement of soil properties in the triaxial test. Edward Arnold, Ltd.

    Google Scholar 

  19. von Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Göttingen Nachrichten Mathematical Physics, 1, 582–592.

    Google Scholar 

  20. Drucker, D. C., & Prager, W. (1958). Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, 10(2), 157–165.

    Article  MathSciNet  Google Scholar 

  21. Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3. Aufl.). McGraw-Hill Book Company.

    Google Scholar 

  22. Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Geotechnique, 8, 22–53. https://doi.org/10.1680/geot.1958.8.1.22

    Article  Google Scholar 

  23. Roscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of „wet“ clay. In Engineering Plasticity (S. 535–609). Cambridge University Press.

    Google Scholar 

  24. Mundl, R., Meschke, G., & Liederer, W. (1997). Friction mechanism of tread blocks on snow surfaces. Tire Science and Technology, 25(4), 245–264.

    Article  Google Scholar 

  25. Casagrande, A. (1936). Characteristics of cohesionless soil affecting the stability of slopes and earth fills. Journal of the Boston Society of Civil Engineers, 23, 13–32.

    Google Scholar 

  26. Błażejczak, D., Jurga, J., & Pytka, J. (2020). Data grouping method for the purpose of forecasting the mechanical strength of plastic soils. Agronomy, 10(4), 578.

    Article  Google Scholar 

  27. Horn, R., Fleige, H., Peth, S., & Peng, X. (Hrsg.). (2006). Soil management for sustainability (Advances in Geoecology 38). CATENA Verlag GmbH.

    Google Scholar 

  28. Reiner, M. (1960). Deformation, strain and flow: An elementary introduction to rheology. H. K. Lewis.

    Book  Google Scholar 

  29. Kisiel, I. (1967). Zastosowanie reologicznego ciała M/V w mechanice gruntów (Ansatz des rheologischen Körpers M/V zu Bodenmechanik). Ossolineum.

    Google Scholar 

  30. Hencky, H. (1924). Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannngen. Zeitschrift für Angewandte Mathematik und Mechanik, 4, 323–334.

    Article  Google Scholar 

  31. Szwaj, S. (1969). Reologiczny model przestrzenny na przykładzie ośrodka gruntowego (Ein rheologisches Modell für Boden), Sypozjum PTMS.

    Google Scholar 

  32. Pukos, A. (1991). Odkształcenia gleby w zależności od rozkładów wielkości porów i cząstek fazy stałej, Problemy Agrofizyki, Zeszyt Nr 61. Instytut Agrofizyki PAN.

    Google Scholar 

  33. Pukos, A. (1983). Thermodynamic interpretation of soil medium deformation. Zeszyty Problemowe Postępów Nauk Rolniczych, 22, 367–399.

    Google Scholar 

  34. Shoop, S., Cary, T., Coutermarsh, B., & Stanley, J. (2012). Effect of vegetation biomass on vehicle traction and motion resistance. In Proceedings of the 12th European regional conference International Society for Terrain-Vehicle Systems (ISTVS), 24–27 September. http://istvs.org/publications

  35. Wieder, W., & Shoop, S. (2017). Vegetation impact on soil strength (CREEL technical report no. SR – 17 – 2). U.S. Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  36. Shoop, S., Wieder, W., MacDonald, K., Carey, T., & Howard, H. (2013). Experimental measurement of biomass impact on soil strength. In Proceedings of the 7th Americas conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November.

    Google Scholar 

  37. Ennos, A. R. (1990). The anchorage of leek seedlings: The effect of root length and soil strength. Annals of Botany, 65, 409–416.

    Article  Google Scholar 

  38. Gray, D. H., & Barker, D. (2004). Root-soil mechanics and interactions. In S. J. Bennett & A. Simon (Hrsg.), Riparian vegetation and fluvial geomorphology. American Geophysical Union.

    Google Scholar 

  39. Pirnazarov, A., Wijekoon, M., Sellgren, U., Lofgren, B., & Andersson, K. (2012). Modeling of the bearing capacity of nordic forest soil. In Proceedings of the 12th European regional conference of the International Society for Terrain-Vehicle Systems (ISTVS), 24–27 September, Pretoria.

    Google Scholar 

  40. Pirnazarov, A., Sellgren, U., & Lofgren, B. (2013). Development of a methodology for predicting the bearing capacity of rooted soft soil. In Proceedings of the 7th American Regional Conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November.

    Google Scholar 

  41. Affleck, R., Shoop, S., Smith, C., Gagnon, K., & Stone, R. (2011). Soil strength as a function of soil and ground cover types. Presented at the 17th International Conference of the International Society for Terrain-Vehicle Systems, 18–22 September.

    Google Scholar 

  42. MacDonald, K. A., & Shoop, S. A. (2013). Validation of the Vegetation and Soil Shear Tester (VASST) with existing soil strength instruments. In Proceedings of the 7th Americas regional conference of the International Society for Terrain-Vehicle Systems (ISTVS), 4–7 November.

    Google Scholar 

  43. Chan, T. K., Lim, H., Tan, T. W., & Lim, C. P. (1999). Variation of bending capacity along the lamina length of a grass, imperata cylindrica var. Major (gramineae). Annals of Botany, 84, 703–708.

    Article  Google Scholar 

  44. Kolowca, J., Wróbel, M., & Baran, B. (2009). Model mechaniczny źdźbła trawy Miscanthus Giganteus. Inżynieria Rolnicza, 6(115).

    Google Scholar 

  45. Stinton, D. (1998). Flying qualities and flight testing of the aeroplane. Blackwell Science/AIAA.

    Google Scholar 

  46. Kanafojski, C. (1980). Theory and construction of agricultural equippment (S. 23–36). Warsaw.

    Google Scholar 

  47. Cenek, P. D., Jamieson, N. J., & McLarin, M. W. (2005). Frictional characteristics of roadside grass types. International Surface Friction Conference, 2005, Christchurch.

    Google Scholar 

  48. Białczyk, W., Cudzik, A., Czarnecki, J., & Pieczarka, K. (2006). Analysis of traction properties of grass area. Zeszyty Naukowe, Wroclaw Agricultural University, No. 545.

    Google Scholar 

  49. Shoop, S. A., Coutermarsh, B., Cary, T., & Howard, H. (2015). Quantifying vegetation biomass impacts on vehicle mobility. Journal of Terramechanics, 61, 63–76.

    Article  Google Scholar 

  50. Collins, J. G. (1971). Forecasting trafficability of soils (Report 10 in technical memorandum 3-331). US Army Waterways Experiment Station.

    Google Scholar 

  51. Anderson, M. G. (1983). On the applicability of soil water finite difference models to operational trafficability models. Journal of Terramechanics, 20(3–4), 139–152.

    Article  Google Scholar 

  52. Detweiler, Z. R., & Ferris, J. B. (2008). Interpolation methods for high-fidelity three-dimensional terrain surfaces. Journal of Terramechanics, 47, 219–226.

    Google Scholar 

  53. Lee, R., & Sandu, C. (2009). Terrain profile modeling using stochastic partial differential equations. International Journal of Vehicle Systems Modelling and Testing, 4(2009), 318–356.

    Article  Google Scholar 

  54. Sandu, C., Sandu, A., & Li, L. (2005). Stochastic modelling of terrain profiles and soil parameters. SAE Transactions.

    Google Scholar 

  55. Ngwangwa, H. M., Heyns, P. S., Labuschange, F. J. J., & Kululanga, G. K. (2010). Reconstruction of road defects and road roughness classification using vehicle response with artificial neural networks simulation. Journal of Terramechanics, 47(3), 97–111.

    Article  Google Scholar 

  56. Sołtyński, A. (1978). Mechanika układu pojazd – teren. WMON Warszawa (auf Polnisch).

    Google Scholar 

  57. Sun, T. C., Chaika, M., Gorsich, D., Wei, J., & Alyass, K. (2007). Methods of simulation of terrain profiles. Proc. ISTVS Conf. Fairbanks.

    Google Scholar 

  58. Smith, H., & Ferris, J. B. (2010). Techniques for averting and correcting errors in 3D terrain topology measurements. Journal of Terramechanics, 47(4), 219–226.

    Article  Google Scholar 

  59. Abele, G., & Gow, A. (1975). Compressibility characteristics of undisturbed snow. (Research Report 336). U.S. Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  60. Lee, J. (2009). A new indentation model for snow. Journal of Terramechanics, 46, 1–13.

    Article  Google Scholar 

  61. Li, L., Sandu, C., Lee, J., & Liu, B. (2009). Stochastic modeling of tire–snow interaction using a polynomial chaos approach. Journal of Terramechanics, 46, 165–188.

    Article  Google Scholar 

  62. Shapiro, L., Johnson, J., Sturm, M., & Blaisdell, G. (1997). Snow mechanics: Review of the state of knowledge and applications (CRREL Report 97-3). U.S. Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  63. Shoop, S., Young, B., Alger, R., & Davis, J. (1994). Winter traction testing. Automotive Engineering, 102(1), 75–78. SAE Paper 940110.

    Google Scholar 

  64. Shoop, S. A. (2001). Finite element Modeling of Tire – Terrain Interaction (CREEL Technical Report No. TR – 01 – 16). U.S. Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  65. Fauve, M., Rhyner, H., & Schneebeli, M. (2002). Preparation and maintenance of pistes. Handbook for practitioners. Swiss federal Institute for Snow and Avalanche Research SLF.

    Google Scholar 

  66. Colbeck, S., Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., McClung, D., & Morris, E. (1985). The international classification for seasonal snow on the ground. International Commission on Snow and Ice.

    Google Scholar 

  67. Johnson, J., Brown, J., Gaffney, E., Blaisdell, G., & Solie, D. (1992). Shock response of snow (CRREL Report 92-12). U.S. Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  68. Bell, J. (2008). The martian surface. composition, mineralogy and physical properties. Cambridge Planetary Science, Cambridge University Press.

    Book  Google Scholar 

  69. Blakkolb, B., Logan, C., Jandura, L., Okon, A., Anderson, M., Katz, I., Aveni, G., Brown, K., Chung, S., Ferraro, N., Limonadi, D., Melko, J., Mennella, J., & Yavrouian, A. (2014). Organic cleanliness of the Mars Science Laboratory sample transfer chain. Review of Scientific Instruments, 85(7), 075111-075111-7.

    Article  Google Scholar 

  70. Li, W., Hang, Y., Cui, Y., Dong, S., & Wang, J. (2010). Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion. Journal of Terramechanics, 47, 161–172.

    Article  Google Scholar 

  71. McKay, D., Carter, J. L., Boles, W. W., Allen, C. C., & Allton, J. H. (1994). JSC-1: A new lunar soil simulant. Engineering, construction and operations in space IV (S. 857–866). American Society of Civil Engineers.

    Google Scholar 

  72. King, R. H., Van Susante, P., & Gefreh, M. A. (2011). Analytical models and laboratory measurements of the soil – Tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths. Journal of Terramechanics, 48, 85–95.

    Article  Google Scholar 

  73. Taylor, L. A., Pieters, C. M., & Britt, D. (2016). Evaluations of lunar regolith simulants. Planetary and Space Science, 126, 1–7.

    Article  Google Scholar 

  74. Oravec, H. A., Zeng, X., & Ansani, V. M. (2010). Design and characterization of GRC-1: A soil for lunar terramechanics testing in Earth-ambient conditions. Journal of Terramechanics, 47, 361–377.

    Article  Google Scholar 

  75. Brunskill, C., Patel, N., Gouache, T. P., Scott, G. P., Saaj, C. M., Matthews, M., & Cui, L. (2011). Characterisation of martian soil simulants for the ExoMars rover testbed. Journal of Terramechanics, 48, 419–438.

    Article  Google Scholar 

  76. Cannon, K. M., Britt, D. T., Smith, T. M., Fritsche, R. F., & Batcheldor, D. (2019). Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus, 317, 470–478.

    Article  Google Scholar 

  77. Spohn, T., Seiferlin, K., Hagermann, A., Knollenberg, J., Ball, A. J., Banaszkiewicz, M., Benkhoff, J., Gadomski, S., Gregorczyk, W., Grygorczuk, J., Hlond, M., Kargl, G., Kuhrt, E., Komle, N., Krasowski, J., Marczewski, W., & Zarnecki, J. C. (2007). Mupus – A thermal and mechanical properties probe for the Rosetta Lander Philae. Space Science Reviews, 128, 339–362.

    Article  Google Scholar 

  78. Pytka, J., Łyszczyk, T., Józwik J., & Gnapowski, E. (2018). Design of Integrated Field Sensor for Grassy Runway Conditions Monitoring System, 2018 12th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Lublin, Poland, 2018, S. 1–9. https://doi.org/10.1109/ISEMA.2018.8442305.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pytka, J. (2024). Der Boden. In: Terramechanik und Geländefahrzeuge. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-32013-3_2

Download citation

Publish with us

Policies and ethics