Skip to main content

Holistic design of innovative cathode air supply for automotive PEM fuel cells

  • Conference paper
  • First Online:
20. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2838 Accesses

Zusammenfassung

Climate change is one of the major threats to mankind. To reach the target of maximum 1.5°C temperature rise compared to pre-industrial levels set by the COP21 Conference in Paris, CO2 emissions from transport must be reduced significantly. Fuel cell technology can play a major role in reducing these emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Hydrogen Council, “How hydrogen empowers the energy transition,” https://hydrogencouncil.com/wp-content/uploads/2017/06/Hydrogen-Council-Vision-Document.pdf, January 2017

  2. James, B. D., Huya-Kouadio, J. M. et al., “Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2018 Update,” http://www.sainc.com/what-we-do/energy-consulting, 2019

  3. Korn, A., Weber, A. et al., “Ansaugsysteme“ from Handbuch Verbrennungsmotor, 7. Auflage, Wiesbaden, Springer Vieweg, 2015

    Google Scholar 

  4. Zamel, N., and Li, X., “Effect of contaminants on polymer electrolyte membrane fuel cells,” Progress in Energy and Combustion Science, 37(3):292-329, 2011

    Google Scholar 

  5. Li, H., Shi, Z. et al., “Impurities in Fuels and Air,” from Encyclopedia of Electrochemical Power Sources, Amsterdam, Elsevier, 2009

    Google Scholar 

  6. Diersch, S., Harenbrock, M., “Contamination Control for LT PEM Fuel Cell Systems,” from 30th International Electric Vehicle Symposium (EVS30) Vol. 2, Red Hook, Curran Associates, 2018, 731-739, ISBN 978-1-5108-6370-5

    Google Scholar 

  7. Misz, U., “Evaluierung der kathodenseitigen Schädigungsmechanismen durch partikuläre und gasförmige Luftschadstoffe mit Hilfe von elektrochemischen Messmethoden zur Standzeiterhöhung von PEM-Brennstoffzellen (Kathodenluft II), https://www.iuta.de/igf-docs/ab_-_kathodenluft_ii_16325n_2012-06-29.pdf, 2015

  8. Ehlers, C., “Mobile Messungen – Messung und Bewertung von Verkehrsemissionen,“ Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt / Energy & Environment 229, Jülich, Zentralbibliothek Verlag, 2014, ISBN 978-3-89336-989-8

    Google Scholar 

  9. Misz, U., Talke, A. et. al., “Effects, Damage Characteristics and Recovery Potential of Traffic-induced Nitric Oxide Emissions in PEM Fuel Cells under Variable Operating Conditions,” Fuel Cells 18(5):594-601, 2018

    Google Scholar 

  10. Talke, A., “Der Einfluss von ausgewählten Luftschadstoffen auf die Brennstoffzelle unter fahrzeugnahen Betriebsbedingungen,“ Ph.D. thesis, Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau, Universität Duisburg-Essen, 2017

    Google Scholar 

  11. Talke, A., Misz, U. et al., “Influence of Nitrogen Compounds on PEMFC: A Comparative Study,” Journal of The Electrochemical Society, 165(6):F3111-3117, 2018

    Google Scholar 

  12. Wurth, S., Abschlussbericht Verbundvorhaben ALASKA: Teilprojekt: Ermittlung der Filterkapazität, 2017

    Google Scholar 

  13. Li, H., Tang, Y. et al., ”A review of water flooding issues in the proton exchange membrane fuel cell,” Journal of Power Sources 178(1):103–117, 2008

    Google Scholar 

  14. Brandau, N., “Analyse zur Zellinternen Befeuchtung eines Polymerelektrolytmembran-Brennstoffzellenstapels,“ Ph.D. thesis, Fakultät für Maschinenbau, Technische Universität Carolo-Wilhelmina, Braunschweig, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harenbrock, M., Korn, A., Weber, A., Hallbauer, E. (2020). Holistic design of innovative cathode air supply for automotive PEM fuel cells. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 20. Internationales Stuttgarter Symposium . Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-30995-4_25

Download citation

Publish with us

Policies and ethics