Skip to main content

Visualizing Landscapes by Geospatial Techniques

Part of the RaumFragen: Stadt – Region – Landschaft book series (RFSRL)

Summary

This chapter will provide an overview on the manifold approaches to the visualization of landscapes. There are many techniques on the market nowadays, but we first start with a historical view on the development of the different presentation methods of landscape models. In the beginning, there have been historical maps, followed by physical 3D models of cities and landscapes and then entering the digital world of GIS-systems, integrating nadir viewing remote sensing data with equidistant topographical maps including contour lines and 2.5 dimensional shaded relief maps of Digital Terrain Models. The second paragraph is dedicated to recent hardware technology and image processing techniques of remote sensing data in order to derive height information of the landscape. Section 2.3 summarizes the Digital Landscape Models, the basic geodata infrastructure available through the German surveying agencies. These multiscale national topographical datasets lead to the harmonization within the Infrastructure for Spatial Information in Europe (INSPIRE). The last paragraph gives some examples of applications in geomorphology, landscape evolution models and animated maps as well as mixed reality, artificial intelligence and landscape architecture and planning. Finally, we not only try to provide a comprehensive overview of the published literature, we also give a comprehensive overview on the available techniques in Fig. 8, where we plotted the “amount of virtuality” against the user involvement. The digital visualization of landscapes as well as the spatial modelling of landscapes under predefined border conditions are a prerequisite for future sustainable decision making.

Keywords

  • 3D-Visualization
  • Animated maps
  • Digital landscape visualization techniques
  • Digital elevation models
  • Image processing
  • Landscape evolution models
  • Virtual reality
  • Visualization hardware

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-658-30956-5_4
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-658-30956-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1

Source: Public Domain

Fig. 2

Source: own presentation

Fig. 3

(Source: Rama 2010, under the license CC BY-SA 2.0 FR)

Fig. 4
Fig. 5

(Source: 3DpluraView)

Fig. 6

(Source: NASA 2020)

Fig. 7

(Source: Dalla Corte et al. 2020)

Fig. 8

(Source: Wallace et al. 2016)

Fig. 9

(Source: GeoBasis-DE/BKG 2020, licensed under dl-de/by-2)

Fig. 10

Source: own presentation

Fig. 11

Source: own presentation

References

  • Agisoft. (2020). Agisoft Metashape. https://www.agisoft.com/. Accessed: 15.05.2020.

  • Albrecht, F., Moser, J., & Hijazi, I. (2013). Assessing façade visibility in 3D city models for city marketing. In U. Isikdag (Ed.), Proceedings of the ISPRS 8th 3D GeoInfo Conference & WG II/2 Workshop (pp. 1 – 5). Istanbul.

    Google Scholar 

  • Amoroso, N. (2019). Representing landscapes analogue. London.

    Google Scholar 

  • Avrithis, Y., Kalantidis, Y., Tolias, G., & Spyrou, E. (2010). Retrieving landmark and non-landmark images from community photo collections. Proceedings of the 18th ACM international conference on Multimedia. Firenze.

    Google Scholar 

  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. https://doi.org/10.1109/38.963459.

    CrossRef  Google Scholar 

  • Bagrow, L. (2017). History of cartography. New York.

    Google Scholar 

  • Bélanger, P. (2013a). The new geographic landscape. Landscape Architecture Frontiers, 1(1), 42–55.

    Google Scholar 

  • Bélanger, P. (2013b). Landscape infrastructure: Urbanism beyond engineering. Wageningen University.

    Google Scholar 

  • Bélanger, P. (2017). Landscape as infrastructure. New York.

    Google Scholar 

  • Bennett, G. L., Evans, D. J. A., Carbonneau, P., & Twigg, D. R. (2010). Evolution of a debris-charged glacier landsystem, Kviarjokull, Iceland. Journal of Maps, 40–67.

    Google Scholar 

  • Berry, J., Buckley, D., & Ulbricht, C. (1998). Visualize realistic landscapes. 3D modeling helps users envision natural resources. GIS World, 11(8), 42–27.

    Google Scholar 

  • Bishop, I. D. (2015). Location based information to support understanding of landscape futures. Landscape and Urban Planning, 142, 120–131. https://doi.org/10.1016/j.landurbplan.2014.06.001.

    CrossRef  Google Scholar 

  • Bishop, I. D., & Miller, D. R. (2007). Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables. Renewable Energy, 32(5), 814–831. https://doi.org/10.1016/j.renene.2006.03.009.

    CrossRef  Google Scholar 

  • Bishop, I. D., & Stock, C. (2010). Using collaborative virtual environments to plan wind energy installations. Renewable Energy, 35(10), 2348–2355.

    CrossRef  Google Scholar 

  • Blair, J. B., David, Rabine, D. L., & Hofton, M. A. (1999). The laser vegetation imaging sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 115–122.

    Google Scholar 

  • Blaschke, T., Tiede, D., & Heurich, M. (2004). 3D landscape metrics to modelling forest structure and diversity based on laser scanning data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 129–132.

    Google Scholar 

  • Brown, L. A. (1950). The story of maps. Boston.

    Google Scholar 

  • Buchroithner, M. F., & Knust, C. (2013). True-3D in cartography. Current hard- and softcopy developments. In: A. Moore & I. Drecki (Eds.), Geospatial visualization (pp. 41–65). Berlin.

    Google Scholar 

  • Bufton, J. L. (1989). Laser altimetry measurements from aircraft and spacecraft. Proceedings of the IEEE, 77(3), 463–477.

    CrossRef  Google Scholar 

  • Buisseret, D. (1998). Modeling cities in early modern Europe. In D. Buisseret (Ed.), Envisioning the city: Six studies in urban cartography (124–143). Chicago.

    Google Scholar 

  • Cantrell, B., & Michaels, W. (2010). Digital drawing for landscape architecture: Contemporary techniques and tools for digital representation in site design. London.

    Google Scholar 

  • Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341–377. https://doi.org/10.1007/s11042-010-0660-6.

    CrossRef  Google Scholar 

  • Cayla, N., Hobléa, F., & Gasquet, D. (2010). Guide des bonnes pratiques de médiation des géosciences sur le terrain. Géologie de la France, 1, 47–55.

    Google Scholar 

  • Chamberlain, B. C., & Meitner, M. J. (2013). A route-based visibility analysis for landscape management. Landscape and Urban Planning, 111, 13–24. https://doi.org/10.1016/j.landurbplan.2012.12.004.

    CrossRef  Google Scholar 

  • Chang, Y. L., Hou, H. T., Pan, C. Y., Sung, Y. T., & Chang, K. E. (2015). Apply an augmented reality in a mobile guidance to increase sense of place for heritage places. Journal of Educational Technology & Society, 18(2), 166–178.

    Google Scholar 

  • Cloude, S. R., & Papathanassiou, K. P. (1998). Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1551–1565. https://doi.org/10.1109/36.718859.

    CrossRef  Google Scholar 

  • Cosgrove, D. E. (1984). Social formation and symbolic landscape. London: University of Wisconsin Press.

    Google Scholar 

  • Coucelo, C., Duarte, P., & Crespo, R. (2013). gison3dmap – Efficient geographic communication with GIS data projection on solid terrain models. In H. Kremers (Ed.), Proceedings CEGeoIC 2013, International Conference on Environmental Information and Communication, Bogotá, Feb. 6–8.

    Google Scholar 

  • Dalla Corte, A. P., Rex, F. E., Almeida, D. R. A., Sanquetta, C. R., Silva, C. A., Moura, M. M., et al. (2020). Measuring individual tree diameter and height using GatorEye High-Density UAV-Lidar in an integrated crop-livestock-forest system. Remote Sensing, 12, 863.

    CrossRef  Google Scholar 

  • de Santarem, M. F. (1852). Essai sur l’histoire de la cosmographie et de la cartographie pendant le moyen-age, et sur les progrès de la géographie après les grandes découvertes du XVe siècle: pour servir d’introduction et d’explication à l’atlas composé de mappemondes et de portulans, et d’autres monuments géographiques, depuis le VIe siècle de notre ère jusquau XVIIe (Vol. 3). Paris.

    Google Scholar 

  • de Vries, S., de Groot, M., & Boers, J. (2012). Eyesores in sight: Quantifying the impact of man-made elements on the scenic beauty of Dutch landscapes. Landscape and Urban Planning, 105(1), 118–127. https://doi.org/10.1016/j.landurbplan.2011.12.005.

    CrossRef  Google Scholar 

  • Di Pietro, J. A. (2018). Geology and Landscape Evolution. General Principles Applied to the United States.

    Google Scholar 

  • Delikostidis, I., Engel, J., Retsios, B., Van Elzakker, C. P., Kraak, M. J., & Döllner, J. (2013). Increasing the usability of pedestrian navigation interfaces by means of landmark visibility analysis. The Journal of Navigation, 66(4), 523–537.

    CrossRef  Google Scholar 

  • Domingo-Santos, J. M., de Villarán, R. F., Rapp-Arrarás, Í., & de Provens, E. C.-P. (2011). The visual exposure in forest and rural landscapes: An algorithm and a GIS tool. Landscape and Urban Planning, 101(1), 52–58. https://doi.org/10.1016/j.landurbplan.2010.11.018.

    CrossRef  Google Scholar 

  • Dorling, D., & Openshaw, S. (1992). Using computer animation to visualize space-time patterns. Environment and Planning B: Planning and Design, 19, 639–650.

    CrossRef  Google Scholar 

  • Dransch, D. (1997). Computer-Animation in der Kartographie: Theorie und Praxis. Heidelberg.

    Google Scholar 

  • Dufour, G. H., & Flamsteed, J. (1833). Topographische Karte der Schweiz. Service Topographique Fédéral.

    Google Scholar 

  • Dupain-Triel, J. L. (1791). La France considérée dans les différentes hauteurs de ses plaines: ouvrage spécialement destiné al’instruction de la jeunesse.

    Google Scholar 

  • Drummond, W. J., & French, S. P. (2008). The future of GIS in planning: Converging technologies and diverging interests. Journal of the American Planning Association, 74(2), 161–174. https://doi.org/10.1080/01944360801982146.

    CrossRef  Google Scholar 

  • Edler, D., Keil, J., & Dickmann, F. (2020). From Na Pali to Earth—An ‘Unreal’ Engine for Modern Geodata? In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern Approaches to the Visualization of Landscapes (pp. 279–291). Wiesbaden: Springer VS.

    Google Scholar 

  • Edler, D., Keil, J., Wiedenlübbert, T., Sossna, M., Kühne, O., & Dickmann, F. (2019). Immersive VR experience of redeveloped post-industrial sites: The example of “Zeche Holland” in Bochum-Wattenscheid. KN - Journal of Cartography and Geographic Information, 69(4), 267–284. https://doi.org/10.1007/s42489-019-00030-2.

    CrossRef  Google Scholar 

  • Ellis, P. (2018). The Panstereorama: City models in the balloon era. Imago Mundi, 70(1), 79–93.

    CrossRef  Google Scholar 

  • Ermi, L., & Mäyrä, F. (2005). Fundamental Components of the Gameplay Experience: Analysing Immersion. DiGRA - International Conference: Changing Views: Worlds in Play.

    Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorfet, D. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2).

    Google Scholar 

  • Faulkner, L. (2006). Physical terrain modeling in a digital age. Simulation series, 38(1), 373.

    Google Scholar 

  • Fontaine, D. (2020). Virtuality and landscape. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 267–278). Wiesbaden: Springer VS.

    Google Scholar 

  • Frachetti, M., & Chippindale, C. (2001). Alpine imagery, alpine space, alpine time, and prehistoric human experience. In G. Nash & C. Chippindale (Eds.), European landscapes of rock-art (116–143). London.

    Google Scholar 

  • Frampton, K. (1999). Megaform as urban landscape. University of Michigan, A. Alfred Taubman College of Architecture + Urban Planning.

    Google Scholar 

  • Geier, B., Egger, K., & Muhar, A. (2001). Integrierte 3D-Visualisierungs-Systeme für die Landschaftsplanung: Konzepte und Marktrealität. In M. Schrenk (Ed.), CORP Geo-Multimedia’01 (231–236). Vienna.

    Google Scholar 

  • Gens, R., & Van Genderen, J. L. (1996). SAR interferometry—issues, techniques, applications. International Journal of Remote Sensing, 17(10), 1803–1835.

    CrossRef  Google Scholar 

  • Göçmen, Z. A., & Ventura, S. J. (2010). Barriers to GIS use in planning. Journal of the American Planning Association, 76(2), 172–183. https://doi.org/10.1080/01944360903585060.

    CrossRef  Google Scholar 

  • Greider, T., & Garkovich, L. (1994). Landscapes: The social construction of nature and the environment. Rural Sociology, 59 (1), 1–24. https://doi.org/10.1111/j.1549-0831.1994.tb00519.x.

  • Gual, J., Puyuelo, M., Lloverás, J., & Merino, L. (2012). Visual Impairment and urban orientation. Pilot study with tactile maps produced through 3D Printing. Psyecology, 3(2), 239–250.

    Google Scholar 

  • Han, D. I., Jung, T., & Gibson, A. (2013). Dublin AR: Implementing augmented reality in tourism. Information and Communication Technologies in Tourism. Cham.

    CrossRef  Google Scholar 

  • Han, D. I., Weber, J., Bastiaansen, M., Mitas, O., & Lub, X. (2019). Virtual and augmented reality technologies to enhance the visitor experience in cultural tourism. In M. C. tom Dieck & T. Jung (Eds.), Augmented reality and virtual reality: The power of AR and VR for business (113–128). Cham: Springer International Publishing.

    Google Scholar 

  • Hardy, P., Briat, M.-O., Eicher, C., & Kressmann, T. (2004). Database-driven cartography from a digital landscape model, with multiple representations and human overrides. ICA Workshop on ‘Generalisation and Multiple Representation’. Leicester.

    Google Scholar 

  • Harmon, R. S. (2006). Real-Time Landscape Model Interaction Using a Tangible Geospatial Modeling Environment.

    Google Scholar 

  • Hartmann, R. (2019). 12 Virtualities in the new tourism landscape. The case of the Anne Frank house virtual tour and of the visualizations of the Berlin Wall in the Cold War context. Tourism Fictions, Simulacra and Virtualities.

    Google Scholar 

  • Hays, J., & Efros, A. A. (2008). IM2GPS: Estimating geographic information from a single image. IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  • Hays, J., & Efros, A. A. (2015). Large-Scale Image Geolocalization. In J. Choi & G. Friedlad (Eds.), Multimodal location estimation of videos and images.

    Google Scholar 

  • Horowitz, W. (1988). The Babylonian map of the world. Iraq, 50, 147–165.

    CrossRef  Google Scholar 

  • Howard, P., Thompson, I., Waterton, E., & Atha, M. (Eds.). (2019). The Routledge companion to landscape studies (2nd ed.). London: Routledge.

    Google Scholar 

  • Imhof, E. (1950). Gelände und Karte. Erlenbach-Zürich.

    Google Scholar 

  • Imhof, E. (1965). Kartographische Geländedarstellung. Berlin.

    Google Scholar 

  • Jamei, E., Mortimer, M., Seyedmahmoudian, M., Horan, B., & Stojcevski, A. (2017). Investigating the role of virtual reality in planning for sustainable smart cities. Sustainability, 9(11), 2006. https://doi.org/10.3390/su9112006.

    CrossRef  Google Scholar 

  • Jellicoe, S. (1987). The landscape of man shaping the environment from prehistory to the present day. London.

    Google Scholar 

  • João, E. M. (1998). Causes and Consequences of Map Generalisation. London.

    Google Scholar 

  • Kerr, J., & Lawson, G. (2019). Augmented reality in design education: Landscape architecture studies as AR experience. International Journal of Art & Design Education. https://doi.org/10.1111/jade.12227.

    CrossRef  Google Scholar 

  • Kleber, A., Edler, D., & Dickmann, F. (2020). Cartography and the sea: A JavaScript-based web mapping application for managing maritime shipping. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 173–186). Wiesbaden: Springer VS.

    Google Scholar 

  • Klimaszewski, M. (1982). Detailed geomorphological maps. ITC Journal, 3, 265–271.

    Google Scholar 

  • Kohlstock, P. (2018). Kartographie. Stuttgart.

    Google Scholar 

  • Kipper, G., & Rampolla, J. (2012). Augmented reality: An emerging technologies Guide to AR.

    Google Scholar 

  • Kühne, O. (2019). Landscape theories. A brief introduction. Wiesbaden: Springer VS.

    CrossRef  Google Scholar 

  • Kühne, O., & Jenal, C. (2020). The threefold landscape dynamics—Basic considerations, conflicts and potentials of virtual landscape research. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (p. 389–402). Wiesbaden: Springer VS.

    Google Scholar 

  • Lange, E. (1998). Realität und computergestützte visuelle Simulation: eine empirische Untersuchung über den Realitätsgrad virtueller Landschaften am Beispiel des Talraums Brunnen/Schwyz. Doctoral dissertation, ETH Zurich.

    Google Scholar 

  • Lange, E., & Bishop, I. (2001). Our Visual Landscape: Analysis, Modelling, Visualization and Protection. Landscape and Urban Planning, 54, 1–4.

    CrossRef  Google Scholar 

  • Lange, E. (2002). Visualization in landscape Architecture and Planning – Where we have been, where we are now and where we might go from here. Trends in GIS and virtualization in environmental planning and design. Proceedings at Anhalt University of Applied Sciences, 8–18.

    Google Scholar 

  • Lehmann, J. G. (1799). Darstellung einer neuen Theorie der Bezeichnung der schiefen Flächen im Grundriß oder Situationszeichnung der Berge. Leipzig.

    Google Scholar 

  • Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106.

    CrossRef  Google Scholar 

  • Lin, Y., Hyyppa, J., & Jaakkola, A. (2010). Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geoscience and Remote Sensing Letters, 8(3), 426–430.

    CrossRef  Google Scholar 

  • Ma, Y., Wright, J., Gopal, S., & Phillips, N. (2020). Seeing the invisible: From imagined to virtual urban landscapes. Cities, 98, 102559. https://doi.org/10.1016/j.cities.2019.102559.

    CrossRef  Google Scholar 

  • Macher, H., Grussenmeyer, P., Landes, T., Halin, G., Chevrier, C., & Huyghe, O. (2017). Photogrammetric recording and reconstruction of town scale models – The case of the plan-relief of Strasbourg. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5: 489–495.

    Google Scholar 

  • Martin, S. (1994). Interactive visual media for geomorphological heritage interpretation. Theoretical Approach and Examples. Geoheritage, 6, 149–157. https://doi.org/10.1007/s12371-014-0107-y.

    CrossRef  Google Scholar 

  • Martínez-Graña, A., & Valdés Rodríguez, V. (2016). Remote sensing and GIS applied to the landscape for the environmental restoration of urbanizations by means of 3D virtual reconstruction and visualization (Salamanca, Spain). ISPRS International Journal of Geo-Information, 5(1), 2.

    CrossRef  Google Scholar 

  • McGranaghan, M. (1993). A cartographic view of spatial data quality. Cartographica: The International Journal for Geographic Information and Geovisualization, 30(2–3), 8–19.

    Google Scholar 

  • Megerle, H. (2008). Geotourismus.: Innovative Ansätze zur touristischen Inwertsetzung und nachhaltigen Regionalentwicklung. Nürnberg.

    Google Scholar 

  • Meyboom, A. (2009). Infrastructure as practice. Journal of Architectural Education, 62(4), 72–81.

    CrossRef  Google Scholar 

  • Meyer-Heß, F. (2020). Discovering forgotten landscapes. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 33–46). Wiesbaden: Springer VS.

    Google Scholar 

  • Mikhail, E. M., Bethel, J. S., & Chris McGlone, J. S. (2001). Introduction to modern photogrammetry. New York.

    Google Scholar 

  • Milgram, P., & Colquhoun, H. J. (1999). A taxonomy of real and virtual world display integration. In: Y. Ohta & H. Tamura (Eds.), Mixed reality. Merging real and virtual worlds (pp. 1–26). Berlin.

    Google Scholar 

  • Ming, Y., Jiang, J., & Bian, F. (2002). 3D-City Model supporting for CCTV monitoring system. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4), 456–459.

    Google Scholar 

  • Mirtskhulava, T. Y. (1988). Osnovy Fiziki i Mekhaniki Erozii Rusel (Principles of physics and mechanics of channel erosion). Leningrad: Gidrometeoizdat. (in Russian).

    Google Scholar 

  • Mistry, P., Maes, P., & Chang, L. (2009). WUW – wear Ur world: a wearable gestural interface. CHI ‘09 extended abstracts on human factors in computing systems. Boston.

    Google Scholar 

  • Mitasova, H., Mitas, L., Ratti, C., Ishii, H., Alonso, J., & Harmon, R. S. (2006). Real-time landscape model interaction using a tangible geospatial modeling environment. IEEE Computer Graphics and Applications, 26(4), 55–63.

    CrossRef  Google Scholar 

  • Möller, B. (2010). Spatial analyses of emerging and fading wind energy landscapes in Denmark. Land Use Policy, 27(2), 233–241. https://doi.org/10.1016/j.landusepol.2009.06.001.

    CrossRef  Google Scholar 

  • Moorhouse, N., Jung, T., & tom Dieck, M. C. (2019). Tourism marketers perspectives on enriching visitors city experience with augmented reality: An exploratory study. In M.C. tom Dieck & T. Jung (Eds.), Augmented reality and virtual reality: The power of AR and VR for business (pp. 129–144). Cham.

    Google Scholar 

  • NASA. (2020). Space Images | Radar Image, Wrapped Color as Height, Lanai and West Maui, Hawaii. https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA02723. Accessed: 18.05.2020.

  • Nijhuis, S. (2015). GIS-based landscape design research. Ph.D.: Delft University of Technology, Delft.

    Google Scholar 

  • Nijhuis, S. (2016). Applications of GIS in landscape design research. Research in Urbanism Series, 44, 43–56. https://doi.org/10.7480/rius.4.1367.

    CrossRef  Google Scholar 

  • Oleksy, T., & Wnuk, A. (2016). Augmented places: An impact of embodied historical experience on attitudes towards places. Computers in Human Behavior, 57, 11–16.

    CrossRef  Google Scholar 

  • Palmer, J. F. (2019). The contribution of a GIS-based landscape assessment model to a scientifically rigorous approach to visual impact assessment. Landscape and Urban Planning, 189, 80–90. https://doi.org/10.1016/j.landurbplan.2019.03.005.

    CrossRef  Google Scholar 

  • Park, T., Liu, M.-Y., Wang, T.-C., & Zhu, J.-Y. (2019). GauGAN: semantic image synthesis with spatially adaptive normalization. ACM SIGGRAPH 2019 Real-Time Live!. Los Angeles.

    Google Scholar 

  • Papagiannakis, G., Singh, G., & Magnenat-Thalmann, N. (2008). A survey of mobile and wireless technologies for augmented reality systems. Computer Animation and Virtual Worlds, 19(1), 3–22. https://doi.org/10.1002/cav.221.

    CrossRef  Google Scholar 

  • Perez, D., Kämpf, J. H., & Scartezzini, J. L. (2013). Urban area energy flow microsimulation for planning support: A calibration and verification study. International Journal on Advances in Systems and Measurements, 6(3–4), 260–271.

    Google Scholar 

  • Peterson, M. P. (1995). Interactive and animated cartography. NJ and Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Pix4D (2020). Professional photogrammetry and drone mapping software | Pix4D. https://www.pix4d.com/. Accessed: 15.05.2020.

  • Poesen, J., & Govers, G. (1990). Gully erosion in the loam belt of Belgium: typology and control measures. In J. Boardmann, I. D. L. Foster, & J. A. Dearing (Eds.), Soil erosion on agriculture land (pp. 513–530). UK: Chichster.

    Google Scholar 

  • Poplin, A., de Andrade, B., & Mahmud, S. (2020). Exploring tangible and intangible landscapes of evocative places: Case study of the city of Vitória in Brazil. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 519–547). Wiesbaden: Springer VS.

    Google Scholar 

  • Prisille, C., & Ellerbrake, M. (2020). Virtual Reality (VR) and Geography Education: Potentials of 360° ‘Experiences’ in Secondary Schools. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 321–332). Wiesbaden: Springer VS.

    Google Scholar 

  • Quack, T., Leibe, B. & Gool, L. V. (2008). World-scale mining of objects and events from community photo collections. Proceedings of the 2008 international conference on Content-based image and video retrieval. Niagara Falls.

    Google Scholar 

  • Ramalingam, S., Bouaziz, S., Sturm, P., & Brand, M. (2010). SKYLINE2GPS: Localization in urban canyons using omni-skylines. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

    Google Scholar 

  • Rothrock, G. A. (1969). The Musee des plans-reliefs. French Historical Studies, 6(2), 253–256.

    CrossRef  Google Scholar 

  • Rupnik, E., Daakir, M., & Pierrot Deseilligny, M. (2017). MicMac – A free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards, 2, 1–9.

    CrossRef  Google Scholar 

  • Sauer, C. (1925). The Morphology of Landscape.

    Google Scholar 

  • Scott, N. & Le, D. (2017). Tourism experience: A review. In CABI, 30–49. Wallingford.

    Google Scholar 

  • Schönberger, J.F., & Frahm, J.-M. (2016). Structure-from-Motion Revisited. 2016 Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  • Seijmonsbergen, A. C., & de Graaff, L. W. S. (2006). Geomorphological mapping and geophysical profiling for the evaluation of natural hazards in an alpine catchment. Natural Hazards and Earth System Science, 6, 185–193.

    CrossRef  Google Scholar 

  • Seo, B.-K., Kim, K., Park, J., & Park, J.-I. (2010). A tracking framework for augmented reality tours on cultural heritage sites. Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry. Seoul, South Korea.

    Google Scholar 

  • Senda-Cook, S. (2013). Materializing tensions: How maps and trails mediate nature. Environmental Communication: A Journal of Nature and Culture, 7(3), 355–371.

    CrossRef  Google Scholar 

  • Sheppard, S. R. (2005). Landscape visualisation and climate change: the potential for influencing perceptions and behaviour. Environmental Science & Policy, 8(6), 637–654.

    CrossRef  Google Scholar 

  • Shiode, N. (2000). 3D urban models: Recent developments in the digital modelling of urban environments in three-dimensions. GeoJournal, 52(3), 263–269.

    CrossRef  Google Scholar 

  • Sidorchuk, A. (1996). Gully erosion and thermo-erosion on the Yamal Peninsula. In O. Slaymaker (Ed.), Geomorphic Hazards (153–168). New York.

    Google Scholar 

  • Sidorchuk, A. (1999). Dynamic and static models of gully erosion. CATENA, 37(3–4), 401–414.

    CrossRef  Google Scholar 

  • Siepmann, N., Edler, D., & Kühne, O. (2020). Soundscapes in cartographic media. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 247–263). Wiesbaden: Springer VS.

    Google Scholar 

  • Smith, E. L., Bishop, I. D., Williams, K. J. H., & Ford, R. M. (2012). Scenario Chooser: An interactive approach to eliciting public landscape preferences. Landscape and urban planning, 106(3), 230–243. https://doi.org/10.1016/j.landurbplan.2012.03.013.

    CrossRef  Google Scholar 

  • Stintzing, M., Pietsch, S., & Wardenga, U. (2020). How to Teach “Landscape” through Games? In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes. Wiesbaden: Springer VS.

    Google Scholar 

  • Stoter, J. E., Meijers, B. M., Van Oosterom, P. J. M., Grunreich, D. & Kraak, M. J. (2010). Applying DLM and DCM concepts in a multi-scale data environment. GDI 2010, a symposium on Generalization and Data Integration. Boulder.

    Google Scholar 

  • Stratmann, J., Ristea, A., Leitner, M., & Paulus, G. (2020). Exploring urban “Blightscapes” applying spatial video technology and geographic information system: A case study from Baton Rouge, USA. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 499–517). Wiesbaden: Springer VS.

    Google Scholar 

  • Temme, A. J. A. M., Armitage, J., Attal, M., Gorp, W., Coulthard, T. J., & Schoorl, J. M. (2017). Developing, choosing and using landscape evolution models to inform field-based landscape reconstruction studies. Earth Surface Processes and Landforms, 42(13), 2167–2183. https://doi.org/10.1002/esp.4162.

    CrossRef  Google Scholar 

  • Tiede, D., & Blaschke, T. (2005). A two-way workflow for integrating CAD, 3D visualization and spatial analysis in a GIS environment. In The 6th international Conference for Information Technologies in Landscape Architecture: Real-Time Visualization and Participation, Visualization in Landscape Architecture, 26–28.

    Google Scholar 

  • Tiede, D., & Lang, S. (2010). Analytical 3D views and virtual globes – Scientific results in a familiar spatial context. ISPRS Journal of Photogrammetry and Remote Sensing, 65(3), 300–307.

    CrossRef  Google Scholar 

  • Torres Sibille, A. d. C., Cloquell-Ballester, V.-A., Cloquell-Ballester, V.-A. & Darton, R. 2009: Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms. Renewable and Sustainable Energy Reviews, 13(1), 40–66. doi:https://doi.org/10.1016/j.rser.2007.05.002.

  • Vetter, M. (2020). Technical potentials for the visualization in virtual reality. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 307–317). Wiesbaden: Springer VS.

    Google Scholar 

  • Wagner, I., Basile, M., Ehrenstrasser, L., Maquil, V., Terrin, J. J., & Wagner, M. (2009). Supporting community engagement in the city: urban planning in the MR-tent. Proceedings of the fourth international conference on Communities and technologies. University Park.

    Google Scholar 

  • Waldheim, C. (2016). Landscape as urbanism: A general theory. Princeton University Press.

    Google Scholar 

  • Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and Structure from Motion (SfM) point clouds. Forests, 7, 62.

    CrossRef  Google Scholar 

  • Weyand, T., Kostrikov, I., & Philbin, J. (2016). PlaNet – Photo geolocation with convolutional neural networks. Computer Vision – ECCV 2016. Cham.

    Google Scholar 

  • Wessel, B. (2018). TanDEM-X ground segment–DEM products specification document.

    Google Scholar 

  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.

    CrossRef  Google Scholar 

  • Woodhouse, I. H. (2005). Introduction to microwave remote sensing.

    Google Scholar 

  • Wu, C. (2015). Structure from Motion using Structure-less Resection. ICCV 2015

    Google Scholar 

  • Yu, X., Xie, Z., Yu, Y., Lee, J., Vazquez-Guardado, A., Luan, H., et al. (2019). Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 575(7783), 473–479. https://doi.org/10.1038/s41586-019-1687-0.

    CrossRef  Google Scholar 

  • Yoëli, P. (1959). Relief shading. Surveying and mapping, 19(2), 229–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Hochschild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hochschild, V., Braun, A., Sommer, C., Warth, G., Omran, A. (2020). Visualizing Landscapes by Geospatial Techniques. In: Edler, D., Jenal, C., Kühne, O. (eds) Modern Approaches to the Visualization of Landscapes. RaumFragen: Stadt – Region – Landschaft. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-30956-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-30956-5_4

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-30955-8

  • Online ISBN: 978-3-658-30956-5

  • eBook Packages: Social SciencesSocial Sciences (R0)