Agisoft. (2020). Agisoft Metashape. https://www.agisoft.com/. Accessed: 15.05.2020.
Albrecht, F., Moser, J., & Hijazi, I. (2013). Assessing façade visibility in 3D city models for city marketing. In U. Isikdag (Ed.), Proceedings of the ISPRS 8th 3D GeoInfo Conference & WG II/2 Workshop (pp. 1 – 5). Istanbul.
Google Scholar
Amoroso, N. (2019). Representing landscapes analogue. London.
Google Scholar
Avrithis, Y., Kalantidis, Y., Tolias, G., & Spyrou, E. (2010). Retrieving landmark and non-landmark images from community photo collections. Proceedings of the 18th ACM international conference on Multimedia. Firenze.
Google Scholar
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47. https://doi.org/10.1109/38.963459.
CrossRef
Google Scholar
Bagrow, L. (2017). History of cartography. New York.
Google Scholar
Bélanger, P. (2013a). The new geographic landscape. Landscape Architecture Frontiers, 1(1), 42–55.
Google Scholar
Bélanger, P. (2013b). Landscape infrastructure: Urbanism beyond engineering. Wageningen University.
Google Scholar
Bélanger, P. (2017). Landscape as infrastructure. New York.
Google Scholar
Bennett, G. L., Evans, D. J. A., Carbonneau, P., & Twigg, D. R. (2010). Evolution of a debris-charged glacier landsystem, Kviarjokull, Iceland. Journal of Maps, 40–67.
Google Scholar
Berry, J., Buckley, D., & Ulbricht, C. (1998). Visualize realistic landscapes. 3D modeling helps users envision natural resources. GIS World, 11(8), 42–27.
Google Scholar
Bishop, I. D. (2015). Location based information to support understanding of landscape futures. Landscape and Urban Planning, 142, 120–131. https://doi.org/10.1016/j.landurbplan.2014.06.001.
CrossRef
Google Scholar
Bishop, I. D., & Miller, D. R. (2007). Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables. Renewable Energy, 32(5), 814–831. https://doi.org/10.1016/j.renene.2006.03.009.
CrossRef
Google Scholar
Bishop, I. D., & Stock, C. (2010). Using collaborative virtual environments to plan wind energy installations. Renewable Energy, 35(10), 2348–2355.
CrossRef
Google Scholar
Blair, J. B., David, Rabine, D. L., & Hofton, M. A. (1999). The laser vegetation imaging sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 115–122.
Google Scholar
Blaschke, T., Tiede, D., & Heurich, M. (2004). 3D landscape metrics to modelling forest structure and diversity based on laser scanning data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 129–132.
Google Scholar
Brown, L. A. (1950). The story of maps. Boston.
Google Scholar
Buchroithner, M. F., & Knust, C. (2013). True-3D in cartography. Current hard- and softcopy developments. In: A. Moore & I. Drecki (Eds.), Geospatial visualization (pp. 41–65). Berlin.
Google Scholar
Bufton, J. L. (1989). Laser altimetry measurements from aircraft and spacecraft. Proceedings of the IEEE, 77(3), 463–477.
CrossRef
Google Scholar
Buisseret, D. (1998). Modeling cities in early modern Europe. In D. Buisseret (Ed.), Envisioning the city: Six studies in urban cartography (124–143). Chicago.
Google Scholar
Cantrell, B., & Michaels, W. (2010). Digital drawing for landscape architecture: Contemporary techniques and tools for digital representation in site design. London.
Google Scholar
Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341–377. https://doi.org/10.1007/s11042-010-0660-6.
CrossRef
Google Scholar
Cayla, N., Hobléa, F., & Gasquet, D. (2010). Guide des bonnes pratiques de médiation des géosciences sur le terrain. Géologie de la France, 1, 47–55.
Google Scholar
Chamberlain, B. C., & Meitner, M. J. (2013). A route-based visibility analysis for landscape management. Landscape and Urban Planning, 111, 13–24. https://doi.org/10.1016/j.landurbplan.2012.12.004.
CrossRef
Google Scholar
Chang, Y. L., Hou, H. T., Pan, C. Y., Sung, Y. T., & Chang, K. E. (2015). Apply an augmented reality in a mobile guidance to increase sense of place for heritage places. Journal of Educational Technology & Society, 18(2), 166–178.
Google Scholar
Cloude, S. R., & Papathanassiou, K. P. (1998). Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1551–1565. https://doi.org/10.1109/36.718859.
CrossRef
Google Scholar
Cosgrove, D. E. (1984). Social formation and symbolic landscape. London: University of Wisconsin Press.
Google Scholar
Coucelo, C., Duarte, P., & Crespo, R. (2013). gison3dmap – Efficient geographic communication with GIS data projection on solid terrain models. In H. Kremers (Ed.), Proceedings CEGeoIC 2013, International Conference on Environmental Information and Communication, Bogotá, Feb. 6–8.
Google Scholar
Dalla Corte, A. P., Rex, F. E., Almeida, D. R. A., Sanquetta, C. R., Silva, C. A., Moura, M. M., et al. (2020). Measuring individual tree diameter and height using GatorEye High-Density UAV-Lidar in an integrated crop-livestock-forest system. Remote Sensing, 12, 863.
CrossRef
Google Scholar
de Santarem, M. F. (1852). Essai sur l’histoire de la cosmographie et de la cartographie pendant le moyen-age, et sur les progrès de la géographie après les grandes découvertes du XVe siècle: pour servir d’introduction et d’explication à l’atlas composé de mappemondes et de portulans, et d’autres monuments géographiques, depuis le VIe siècle de notre ère jusquau XVIIe (Vol. 3). Paris.
Google Scholar
de Vries, S., de Groot, M., & Boers, J. (2012). Eyesores in sight: Quantifying the impact of man-made elements on the scenic beauty of Dutch landscapes. Landscape and Urban Planning, 105(1), 118–127. https://doi.org/10.1016/j.landurbplan.2011.12.005.
CrossRef
Google Scholar
Di Pietro, J. A. (2018). Geology and Landscape Evolution. General Principles Applied to the United States.
Google Scholar
Delikostidis, I., Engel, J., Retsios, B., Van Elzakker, C. P., Kraak, M. J., & Döllner, J. (2013). Increasing the usability of pedestrian navigation interfaces by means of landmark visibility analysis. The Journal of Navigation, 66(4), 523–537.
CrossRef
Google Scholar
Domingo-Santos, J. M., de Villarán, R. F., Rapp-Arrarás, Í., & de Provens, E. C.-P. (2011). The visual exposure in forest and rural landscapes: An algorithm and a GIS tool. Landscape and Urban Planning, 101(1), 52–58. https://doi.org/10.1016/j.landurbplan.2010.11.018.
CrossRef
Google Scholar
Dorling, D., & Openshaw, S. (1992). Using computer animation to visualize space-time patterns. Environment and Planning B: Planning and Design, 19, 639–650.
CrossRef
Google Scholar
Dransch, D. (1997). Computer-Animation in der Kartographie: Theorie und Praxis. Heidelberg.
Google Scholar
Dufour, G. H., & Flamsteed, J. (1833). Topographische Karte der Schweiz. Service Topographique Fédéral.
Google Scholar
Dupain-Triel, J. L. (1791). La France considérée dans les différentes hauteurs de ses plaines: ouvrage spécialement destiné al’instruction de la jeunesse.
Google Scholar
Drummond, W. J., & French, S. P. (2008). The future of GIS in planning: Converging technologies and diverging interests. Journal of the American Planning Association, 74(2), 161–174. https://doi.org/10.1080/01944360801982146.
CrossRef
Google Scholar
Edler, D., Keil, J., & Dickmann, F. (2020). From Na Pali to Earth—An ‘Unreal’ Engine for Modern Geodata? In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern Approaches to the Visualization of Landscapes (pp. 279–291). Wiesbaden: Springer VS.
Google Scholar
Edler, D., Keil, J., Wiedenlübbert, T., Sossna, M., Kühne, O., & Dickmann, F. (2019). Immersive VR experience of redeveloped post-industrial sites: The example of “Zeche Holland” in Bochum-Wattenscheid. KN - Journal of Cartography and Geographic Information, 69(4), 267–284. https://doi.org/10.1007/s42489-019-00030-2.
CrossRef
Google Scholar
Ellis, P. (2018). The Panstereorama: City models in the balloon era. Imago Mundi, 70(1), 79–93.
CrossRef
Google Scholar
Ermi, L., & Mäyrä, F. (2005). Fundamental Components of the Gameplay Experience: Analysing Immersion. DiGRA - International Conference: Changing Views: Worlds in Play.
Google Scholar
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorfet, D. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2).
Google Scholar
Faulkner, L. (2006). Physical terrain modeling in a digital age. Simulation series, 38(1), 373.
Google Scholar
Fontaine, D. (2020). Virtuality and landscape. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 267–278). Wiesbaden: Springer VS.
Google Scholar
Frachetti, M., & Chippindale, C. (2001). Alpine imagery, alpine space, alpine time, and prehistoric human experience. In G. Nash & C. Chippindale (Eds.), European landscapes of rock-art (116–143). London.
Google Scholar
Frampton, K. (1999). Megaform as urban landscape. University of Michigan, A. Alfred Taubman College of Architecture + Urban Planning.
Google Scholar
Geier, B., Egger, K., & Muhar, A. (2001). Integrierte 3D-Visualisierungs-Systeme für die Landschaftsplanung: Konzepte und Marktrealität. In M. Schrenk (Ed.), CORP Geo-Multimedia’01 (231–236). Vienna.
Google Scholar
Gens, R., & Van Genderen, J. L. (1996). SAR interferometry—issues, techniques, applications. International Journal of Remote Sensing, 17(10), 1803–1835.
CrossRef
Google Scholar
Göçmen, Z. A., & Ventura, S. J. (2010). Barriers to GIS use in planning. Journal of the American Planning Association, 76(2), 172–183. https://doi.org/10.1080/01944360903585060.
CrossRef
Google Scholar
Greider, T., & Garkovich, L. (1994). Landscapes: The social construction of nature and the environment. Rural Sociology, 59 (1), 1–24. https://doi.org/10.1111/j.1549-0831.1994.tb00519.x.
Gual, J., Puyuelo, M., Lloverás, J., & Merino, L. (2012). Visual Impairment and urban orientation. Pilot study with tactile maps produced through 3D Printing. Psyecology, 3(2), 239–250.
Google Scholar
Han, D. I., Jung, T., & Gibson, A. (2013). Dublin AR: Implementing augmented reality in tourism. Information and Communication Technologies in Tourism. Cham.
CrossRef
Google Scholar
Han, D. I., Weber, J., Bastiaansen, M., Mitas, O., & Lub, X. (2019). Virtual and augmented reality technologies to enhance the visitor experience in cultural tourism. In M. C. tom Dieck & T. Jung (Eds.), Augmented reality and virtual reality: The power of AR and VR for business (113–128). Cham: Springer International Publishing.
Google Scholar
Hardy, P., Briat, M.-O., Eicher, C., & Kressmann, T. (2004). Database-driven cartography from a digital landscape model, with multiple representations and human overrides. ICA Workshop on ‘Generalisation and Multiple Representation’. Leicester.
Google Scholar
Harmon, R. S. (2006). Real-Time Landscape Model Interaction Using a Tangible Geospatial Modeling Environment.
Google Scholar
Hartmann, R. (2019). 12 Virtualities in the new tourism landscape. The case of the Anne Frank house virtual tour and of the visualizations of the Berlin Wall in the Cold War context. Tourism Fictions, Simulacra and Virtualities.
Google Scholar
Hays, J., & Efros, A. A. (2008). IM2GPS: Estimating geographic information from a single image. IEEE Conference on Computer Vision and Pattern Recognition.
Google Scholar
Hays, J., & Efros, A. A. (2015). Large-Scale Image Geolocalization. In J. Choi & G. Friedlad (Eds.), Multimodal location estimation of videos and images.
Google Scholar
Horowitz, W. (1988). The Babylonian map of the world. Iraq, 50, 147–165.
CrossRef
Google Scholar
Howard, P., Thompson, I., Waterton, E., & Atha, M. (Eds.). (2019). The Routledge companion to landscape studies (2nd ed.). London: Routledge.
Google Scholar
Imhof, E. (1950). Gelände und Karte. Erlenbach-Zürich.
Google Scholar
Imhof, E. (1965). Kartographische Geländedarstellung. Berlin.
Google Scholar
Jamei, E., Mortimer, M., Seyedmahmoudian, M., Horan, B., & Stojcevski, A. (2017). Investigating the role of virtual reality in planning for sustainable smart cities. Sustainability, 9(11), 2006. https://doi.org/10.3390/su9112006.
CrossRef
Google Scholar
Jellicoe, S. (1987). The landscape of man shaping the environment from prehistory to the present day. London.
Google Scholar
João, E. M. (1998). Causes and Consequences of Map Generalisation. London.
Google Scholar
Kerr, J., & Lawson, G. (2019). Augmented reality in design education: Landscape architecture studies as AR experience. International Journal of Art & Design Education. https://doi.org/10.1111/jade.12227.
CrossRef
Google Scholar
Kleber, A., Edler, D., & Dickmann, F. (2020). Cartography and the sea: A JavaScript-based web mapping application for managing maritime shipping. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 173–186). Wiesbaden: Springer VS.
Google Scholar
Klimaszewski, M. (1982). Detailed geomorphological maps. ITC Journal, 3, 265–271.
Google Scholar
Kohlstock, P. (2018). Kartographie. Stuttgart.
Google Scholar
Kipper, G., & Rampolla, J. (2012). Augmented reality: An emerging technologies Guide to AR.
Google Scholar
Kühne, O. (2019). Landscape theories. A brief introduction. Wiesbaden: Springer VS.
CrossRef
Google Scholar
Kühne, O., & Jenal, C. (2020). The threefold landscape dynamics—Basic considerations, conflicts and potentials of virtual landscape research. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (p. 389–402). Wiesbaden: Springer VS.
Google Scholar
Lange, E. (1998). Realität und computergestützte visuelle Simulation: eine empirische Untersuchung über den Realitätsgrad virtueller Landschaften am Beispiel des Talraums Brunnen/Schwyz. Doctoral dissertation, ETH Zurich.
Google Scholar
Lange, E., & Bishop, I. (2001). Our Visual Landscape: Analysis, Modelling, Visualization and Protection. Landscape and Urban Planning, 54, 1–4.
CrossRef
Google Scholar
Lange, E. (2002). Visualization in landscape Architecture and Planning – Where we have been, where we are now and where we might go from here. Trends in GIS and virtualization in environmental planning and design. Proceedings at Anhalt University of Applied Sciences, 8–18.
Google Scholar
Lehmann, J. G. (1799). Darstellung einer neuen Theorie der Bezeichnung der schiefen Flächen im Grundriß oder Situationszeichnung der Berge. Leipzig.
Google Scholar
Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106.
CrossRef
Google Scholar
Lin, Y., Hyyppa, J., & Jaakkola, A. (2010). Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geoscience and Remote Sensing Letters, 8(3), 426–430.
CrossRef
Google Scholar
Ma, Y., Wright, J., Gopal, S., & Phillips, N. (2020). Seeing the invisible: From imagined to virtual urban landscapes. Cities, 98, 102559. https://doi.org/10.1016/j.cities.2019.102559.
CrossRef
Google Scholar
Macher, H., Grussenmeyer, P., Landes, T., Halin, G., Chevrier, C., & Huyghe, O. (2017). Photogrammetric recording and reconstruction of town scale models – The case of the plan-relief of Strasbourg. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5: 489–495.
Google Scholar
Martin, S. (1994). Interactive visual media for geomorphological heritage interpretation. Theoretical Approach and Examples. Geoheritage, 6, 149–157. https://doi.org/10.1007/s12371-014-0107-y.
CrossRef
Google Scholar
Martínez-Graña, A., & Valdés Rodríguez, V. (2016). Remote sensing and GIS applied to the landscape for the environmental restoration of urbanizations by means of 3D virtual reconstruction and visualization (Salamanca, Spain). ISPRS International Journal of Geo-Information, 5(1), 2.
CrossRef
Google Scholar
McGranaghan, M. (1993). A cartographic view of spatial data quality. Cartographica: The International Journal for Geographic Information and Geovisualization, 30(2–3), 8–19.
Google Scholar
Megerle, H. (2008). Geotourismus.: Innovative Ansätze zur touristischen Inwertsetzung und nachhaltigen Regionalentwicklung. Nürnberg.
Google Scholar
Meyboom, A. (2009). Infrastructure as practice. Journal of Architectural Education, 62(4), 72–81.
CrossRef
Google Scholar
Meyer-Heß, F. (2020). Discovering forgotten landscapes. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 33–46). Wiesbaden: Springer VS.
Google Scholar
Mikhail, E. M., Bethel, J. S., & Chris McGlone, J. S. (2001). Introduction to modern photogrammetry. New York.
Google Scholar
Milgram, P., & Colquhoun, H. J. (1999). A taxonomy of real and virtual world display integration. In: Y. Ohta & H. Tamura (Eds.), Mixed reality. Merging real and virtual worlds (pp. 1–26). Berlin.
Google Scholar
Ming, Y., Jiang, J., & Bian, F. (2002). 3D-City Model supporting for CCTV monitoring system. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4), 456–459.
Google Scholar
Mirtskhulava, T. Y. (1988). Osnovy Fiziki i Mekhaniki Erozii Rusel (Principles of physics and mechanics of channel erosion). Leningrad: Gidrometeoizdat. (in Russian).
Google Scholar
Mistry, P., Maes, P., & Chang, L. (2009). WUW – wear Ur world: a wearable gestural interface. CHI ‘09 extended abstracts on human factors in computing systems. Boston.
Google Scholar
Mitasova, H., Mitas, L., Ratti, C., Ishii, H., Alonso, J., & Harmon, R. S. (2006). Real-time landscape model interaction using a tangible geospatial modeling environment. IEEE Computer Graphics and Applications, 26(4), 55–63.
CrossRef
Google Scholar
Möller, B. (2010). Spatial analyses of emerging and fading wind energy landscapes in Denmark. Land Use Policy, 27(2), 233–241. https://doi.org/10.1016/j.landusepol.2009.06.001.
CrossRef
Google Scholar
Moorhouse, N., Jung, T., & tom Dieck, M. C. (2019). Tourism marketers perspectives on enriching visitors city experience with augmented reality: An exploratory study. In M.C. tom Dieck & T. Jung (Eds.), Augmented reality and virtual reality: The power of AR and VR for business (pp. 129–144). Cham.
Google Scholar
NASA. (2020). Space Images | Radar Image, Wrapped Color as Height, Lanai and West Maui, Hawaii. https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA02723. Accessed: 18.05.2020.
Nijhuis, S. (2015). GIS-based landscape design research. Ph.D.: Delft University of Technology, Delft.
Google Scholar
Nijhuis, S. (2016). Applications of GIS in landscape design research. Research in Urbanism Series, 44, 43–56. https://doi.org/10.7480/rius.4.1367.
CrossRef
Google Scholar
Oleksy, T., & Wnuk, A. (2016). Augmented places: An impact of embodied historical experience on attitudes towards places. Computers in Human Behavior, 57, 11–16.
CrossRef
Google Scholar
Palmer, J. F. (2019). The contribution of a GIS-based landscape assessment model to a scientifically rigorous approach to visual impact assessment. Landscape and Urban Planning, 189, 80–90. https://doi.org/10.1016/j.landurbplan.2019.03.005.
CrossRef
Google Scholar
Park, T., Liu, M.-Y., Wang, T.-C., & Zhu, J.-Y. (2019). GauGAN: semantic image synthesis with spatially adaptive normalization. ACM SIGGRAPH 2019 Real-Time Live!. Los Angeles.
Google Scholar
Papagiannakis, G., Singh, G., & Magnenat-Thalmann, N. (2008). A survey of mobile and wireless technologies for augmented reality systems. Computer Animation and Virtual Worlds, 19(1), 3–22. https://doi.org/10.1002/cav.221.
CrossRef
Google Scholar
Perez, D., Kämpf, J. H., & Scartezzini, J. L. (2013). Urban area energy flow microsimulation for planning support: A calibration and verification study. International Journal on Advances in Systems and Measurements, 6(3–4), 260–271.
Google Scholar
Peterson, M. P. (1995). Interactive and animated cartography. NJ and Englewood Cliffs: Prentice Hall.
Google Scholar
Pix4D (2020). Professional photogrammetry and drone mapping software | Pix4D. https://www.pix4d.com/. Accessed: 15.05.2020.
Poesen, J., & Govers, G. (1990). Gully erosion in the loam belt of Belgium: typology and control measures. In J. Boardmann, I. D. L. Foster, & J. A. Dearing (Eds.), Soil erosion on agriculture land (pp. 513–530). UK: Chichster.
Google Scholar
Poplin, A., de Andrade, B., & Mahmud, S. (2020). Exploring tangible and intangible landscapes of evocative places: Case study of the city of Vitória in Brazil. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 519–547). Wiesbaden: Springer VS.
Google Scholar
Prisille, C., & Ellerbrake, M. (2020). Virtual Reality (VR) and Geography Education: Potentials of 360° ‘Experiences’ in Secondary Schools. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 321–332). Wiesbaden: Springer VS.
Google Scholar
Quack, T., Leibe, B. & Gool, L. V. (2008). World-scale mining of objects and events from community photo collections. Proceedings of the 2008 international conference on Content-based image and video retrieval. Niagara Falls.
Google Scholar
Ramalingam, S., Bouaziz, S., Sturm, P., & Brand, M. (2010). SKYLINE2GPS: Localization in urban canyons using omni-skylines. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Google Scholar
Rothrock, G. A. (1969). The Musee des plans-reliefs. French Historical Studies, 6(2), 253–256.
CrossRef
Google Scholar
Rupnik, E., Daakir, M., & Pierrot Deseilligny, M. (2017). MicMac – A free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards, 2, 1–9.
CrossRef
Google Scholar
Sauer, C. (1925). The Morphology of Landscape.
Google Scholar
Scott, N. & Le, D. (2017). Tourism experience: A review. In CABI, 30–49. Wallingford.
Google Scholar
Schönberger, J.F., & Frahm, J.-M. (2016). Structure-from-Motion Revisited. 2016 Conference on Computer Vision and Pattern Recognition (CVPR).
Google Scholar
Seijmonsbergen, A. C., & de Graaff, L. W. S. (2006). Geomorphological mapping and geophysical profiling for the evaluation of natural hazards in an alpine catchment. Natural Hazards and Earth System Science, 6, 185–193.
CrossRef
Google Scholar
Seo, B.-K., Kim, K., Park, J., & Park, J.-I. (2010). A tracking framework for augmented reality tours on cultural heritage sites. Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry. Seoul, South Korea.
Google Scholar
Senda-Cook, S. (2013). Materializing tensions: How maps and trails mediate nature. Environmental Communication: A Journal of Nature and Culture, 7(3), 355–371.
CrossRef
Google Scholar
Sheppard, S. R. (2005). Landscape visualisation and climate change: the potential for influencing perceptions and behaviour. Environmental Science & Policy, 8(6), 637–654.
CrossRef
Google Scholar
Shiode, N. (2000). 3D urban models: Recent developments in the digital modelling of urban environments in three-dimensions. GeoJournal, 52(3), 263–269.
CrossRef
Google Scholar
Sidorchuk, A. (1996). Gully erosion and thermo-erosion on the Yamal Peninsula. In O. Slaymaker (Ed.), Geomorphic Hazards (153–168). New York.
Google Scholar
Sidorchuk, A. (1999). Dynamic and static models of gully erosion. CATENA, 37(3–4), 401–414.
CrossRef
Google Scholar
Siepmann, N., Edler, D., & Kühne, O. (2020). Soundscapes in cartographic media. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 247–263). Wiesbaden: Springer VS.
Google Scholar
Smith, E. L., Bishop, I. D., Williams, K. J. H., & Ford, R. M. (2012). Scenario Chooser: An interactive approach to eliciting public landscape preferences. Landscape and urban planning, 106(3), 230–243. https://doi.org/10.1016/j.landurbplan.2012.03.013.
CrossRef
Google Scholar
Stintzing, M., Pietsch, S., & Wardenga, U. (2020). How to Teach “Landscape” through Games? In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes. Wiesbaden: Springer VS.
Google Scholar
Stoter, J. E., Meijers, B. M., Van Oosterom, P. J. M., Grunreich, D. & Kraak, M. J. (2010). Applying DLM and DCM concepts in a multi-scale data environment. GDI 2010, a symposium on Generalization and Data Integration. Boulder.
Google Scholar
Stratmann, J., Ristea, A., Leitner, M., & Paulus, G. (2020). Exploring urban “Blightscapes” applying spatial video technology and geographic information system: A case study from Baton Rouge, USA. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 499–517). Wiesbaden: Springer VS.
Google Scholar
Temme, A. J. A. M., Armitage, J., Attal, M., Gorp, W., Coulthard, T. J., & Schoorl, J. M. (2017). Developing, choosing and using landscape evolution models to inform field-based landscape reconstruction studies. Earth Surface Processes and Landforms, 42(13), 2167–2183. https://doi.org/10.1002/esp.4162.
CrossRef
Google Scholar
Tiede, D., & Blaschke, T. (2005). A two-way workflow for integrating CAD, 3D visualization and spatial analysis in a GIS environment. In The 6th international Conference for Information Technologies in Landscape Architecture: Real-Time Visualization and Participation, Visualization in Landscape Architecture, 26–28.
Google Scholar
Tiede, D., & Lang, S. (2010). Analytical 3D views and virtual globes – Scientific results in a familiar spatial context. ISPRS Journal of Photogrammetry and Remote Sensing, 65(3), 300–307.
CrossRef
Google Scholar
Torres Sibille, A. d. C., Cloquell-Ballester, V.-A., Cloquell-Ballester, V.-A. & Darton, R. 2009: Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms. Renewable and Sustainable Energy Reviews, 13(1), 40–66. doi:https://doi.org/10.1016/j.rser.2007.05.002.
Vetter, M. (2020). Technical potentials for the visualization in virtual reality. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 307–317). Wiesbaden: Springer VS.
Google Scholar
Wagner, I., Basile, M., Ehrenstrasser, L., Maquil, V., Terrin, J. J., & Wagner, M. (2009). Supporting community engagement in the city: urban planning in the MR-tent. Proceedings of the fourth international conference on Communities and technologies. University Park.
Google Scholar
Waldheim, C. (2016). Landscape as urbanism: A general theory. Princeton University Press.
Google Scholar
Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and Structure from Motion (SfM) point clouds. Forests, 7, 62.
CrossRef
Google Scholar
Weyand, T., Kostrikov, I., & Philbin, J. (2016). PlaNet – Photo geolocation with convolutional neural networks. Computer Vision – ECCV 2016. Cham.
Google Scholar
Wessel, B. (2018). TanDEM-X ground segment–DEM products specification document.
Google Scholar
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.
CrossRef
Google Scholar
Woodhouse, I. H. (2005). Introduction to microwave remote sensing.
Google Scholar
Wu, C. (2015). Structure from Motion using Structure-less Resection. ICCV 2015
Google Scholar
Yu, X., Xie, Z., Yu, Y., Lee, J., Vazquez-Guardado, A., Luan, H., et al. (2019). Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 575(7783), 473–479. https://doi.org/10.1038/s41586-019-1687-0.
CrossRef
Google Scholar
Yoëli, P. (1959). Relief shading. Surveying and mapping, 19(2), 229–232.
Google Scholar