Skip to main content

Discovering Forgotten Landscapes

  • Chapter
  • First Online:
Modern Approaches to the Visualization of Landscapes

Part of the book series: RaumFragen: Stadt – Region – Landschaft ((RFSRL))

Abstract

Human activities associated with agriculture and settlement have been a relief-shaping element in landscape history for thousands of years. Different stages of these processes can be visualized using laser-derived Digital Terrain Models (DTM) that revolutionized exploration of landscapes especially in archaeological research. Conventional models support understanding of landscapes general character. For detailed analysis, however, these are too coarse. That is what complex micro-relief visualizations are specialized in. These allow for detailed investigations and documentations of relief features, e.g. historical field systems and their transformation over time. Furthermore, they can be used to automatically detect different types of relief structures, which is the most recent research topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold, V. (2011). Celtic Fields und andere urgeschichtliche Ackersysteme in historisch alten Waldstandorten Schleswig-Holsteins aus Laserscan-Daten. Archäologisches Korrespondenzblatt, 41(3), 439–455.

    Google Scholar 

  • Bezirksregierung Köln. (2020). Digitales Basis-Landschaftsmodell (Basis-DLM). https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/opendata/index.html. Accessed 17.4.2020.

  • Bofinger, J., Kurz, S., & Schmidt, S. (2007). Hightech aus der Luft für Bodendenkmale – Airborne Laserscanning (LIDAR) und Archäologie. Denkmalpflege in Baden-Württemberg – Nachrichtenblatt der Landesdenkmalpflege, 36(3), 153–158.

    Google Scholar 

  • Brouwer, S. (2015). Ermittlung von Wölbäckern aus dem Digitalen Geländemodell mit ArcGIS. Eine Reliefanalyse zur Rekonstruktion historischer Landnutzung in NRW. Unpublished Master’s Thesis, Hochschule Osnabrück and Universität Osnabrück.

    Google Scholar 

  • Cerrillo-Cuenca, E. (2017). An approach to the automatic surveying of prehistoric barrows through LiDAR. Quat. Inter., 2017(435), 135–145.

    Google Scholar 

  • Crutchley, S. (2006). Light Detection and Ranging (lidar) in the Witham Valley, Lincolnshire – An Assessment of New Remote Sensing Techniques. Archaeological Prospection, 13, 251–257.

    Google Scholar 

  • Davis, D., Sanger, M., & Lipo, C. (2019). Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeastern Archaeology, 38(1), 23–37.

    Google Scholar 

  • De Boer, A. (2007). Using pattern recognition to search LIDAR data for archeological sites. In: A. Figueiredo & G. Velho (Eds.), The world is in your eyes – CAA2005 – Computer applications and quantitative Methods in archaeology – Proceedings of the 33rd conference, Tomar, March 2005 (pp. 245–254). Tomar: CAA Portugal.

    Google Scholar 

  • Devereux, B., Amable, G., Crow, P., & Cliff, A. (2005). The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity, 79, 648–660.

    Google Scholar 

  • Devereux, B., Amable, G., & Crow, P. (2008). Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity, 82, 470–479.

    Google Scholar 

  • Doneus, M. (2013). Openness as visualization technique for interpretative mapping of Airborne LiDAR derived digital terrain models. Remote Sensing, 5, 6427–6442.

    Google Scholar 

  • Doneus, M., & Briese, C. (2006). Full-Waveform Airborne laser scanning as a tool for archaeological reconnaissance. In S. Campana & M. Forte (Eds.), From space to place: 2. International conference on remote sensing in archaeology; Proceedings of the 2. International workshop, CNR, Rome, Italy, December 2–4, 2006 (BAR International Series, vol. 1568, pp. 99–106). Oxford: Archaeopress.

    Google Scholar 

  • Doneus, M., Briese, C., Fera, M., & Janner, M. (2008). Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science, 35, 882–893.

    Google Scholar 

  • Edler, D., Keil, J., & Dickmann, F. (2020). From Na Pali to Earth—An ‘Unreal’ Engine for Modern Geodata? In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 279–291). Wiesbaden: Springer VS.

    Chapter  Google Scholar 

  • Edler, D., & Dickmann, F. (2019). Landschaft im amtlichen Geoinformationswesen. In O. Kühne, F. Weber, K. Berr, & C. Jenal (Eds.), Handbuch Landschaft (pp. 507–515). Wiesbaden: Springer VS.

    Chapter  Google Scholar 

  • European Commission. (2007). Directive 2007/2/EC of the European Parliament and the of the council of 14 March 2007 establishing and Infrastructure for Spatial Information in the European Community (INSPIRE). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0002&qid=1581958705103&from=EN. Accessed: 17.4.2020.

  • Hake, G., Grünreich, D., & Meng, L. (2002). Kartographie. Visualisierung raum-zeitlicher Informationen. Berlin: De Gruyter.

    Google Scholar 

  • Heinzel, J., & Sittler, B. (2010). LiDAR surveys of ancient landscapes in SW Germany. Assessment of archaeological features under forests and attempts for automatic pattern recognition. In S. Campana, M. Forte, & C. Liuzza (Eds.), Space, Time, Place. Third International Conference on Remote Sensing in Archaeology (BAR International Series, vol. 2118, pp. 113–121). Oxford: Archaeopress.

    Google Scholar 

  • Hesse, R. (2010). LiDAR-derived local relief models. A new tool for archaeological prospection. Archaeological Prospection, 17, 67–72.

    Google Scholar 

  • Hochschild, V., Braun, A., Sommer, C., Warth, G., & Omran, A. (2020). Visualizing landscapes by geospatial techniques. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 47–78). Wiesbaden: Springer VS.

    Google Scholar 

  • Holden, N. (2001). Digital airborne Remote Sensing – The Principles of LIDAR and CASI. AARGnews, 22, 23–24.

    Google Scholar 

  • Holden, N., Horne, P., & Bewley, R. (2002). High-resolution digital airborne mapping and archaeology. In R. Bewley & M. Raczkowski (Eds.), Aerial archaeology – Developing future practice (pp. 173–180). Amsterdam: IOS Press.

    Google Scholar 

  • Freeland, T., Heung, B., Burley, D., Clark, G., & Knudby, A. (2016). Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. Journal of Archaeological Science, 69, 64–74.

    Google Scholar 

  • Kühne, O. (2019). Landscape theories. A brief introduction. Wiesbaden: Springer VS.

    Book  Google Scholar 

  • Kühne, O., & Jenal, C. (2020). The threefold landscape dynamics—Basic considerations, conflicts and potentials of virtual landscape research. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 389–402). Wiesbaden: Springer VS.

    Google Scholar 

  • Küster, H. (2010). Geschichte der Landschaft in Mitteleuropa. München: C.H. Beck.

    Google Scholar 

  • Kokalj, Ž., Zakšek, K., & Oštir, K. (2011). Application of sky-view factor for the visualization of historic landscape features in Lidar-Derived relief models. Antiquity, 85(327), 263–273.

    Google Scholar 

  • Kokalj, Ž., & Hesse, R. (2017). Airborne laser scanning raster data visualization: A guide to good practice. Ljubljana: Založba ZRC.

    Book  Google Scholar 

  • Land NRW. (2020). OpenGeodata.NRW. Data licence germany: dl-de/by-2-0 (www.govdata.de/dl-de/by-2-0). https://www.opengeodata.nrw.de/produkte/geobasis. Accessed: 5.4.2020.

  • Meyer, M. F., Pfeffer, I., & Jürgens, C. (2019). Automated Detection of Field Monuments in Digital Terrain Models of Westphalia Using OBIA. Geosciences, 2019(9, 3), 109.

    Google Scholar 

  • Motkin, D. (2001). An assessment of LIDAR for archaeological use. AARGnews, 22, 24–25.

    Google Scholar 

  • Noack, D. (2019). GIS-gestützte Analyse zum Wölbackervorkommen in der Prignitz. Unpublished Master’s Thesis, Universität Salzburg.

    Google Scholar 

  • Pfeffer, I. (2017). Celtic Fields. Neu entdeckte eisenzeitliche Ackersysteme in Westfalen. Archäologie in Westfalen Lippe, 2016, 207–211.

    Google Scholar 

  • Poplin, A., de Andrade, B., & Mahmud, S. (2020). Exploring tangible and intangible landscapes of evocative places: Case study of the city of Vitória in Brazil. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 519–547). Wiesbaden: Springer VS.

    Google Scholar 

  • Schenk, W. (2020). Visualisation of the fundamental dimensions of “landscape” in landscape paintings around 1500 A.D. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 19–32). Wiesbaden: Springer VS.

    Google Scholar 

  • Schenk, W. (2011). Historische Geographie. Darmstadt: WBG.

    Google Scholar 

  • Schneider, A., Takla, M., Nicolay, A., Raab, A., & Raab, T. (2015). A template-matching approach combining morphometric variables for automated mapping of charcoal kiln sites. Archaeological Prospection, 22, 45–62.

    Google Scholar 

  • Sevara, C., Pregesbauer, M., Doneus, M., Verhoeven, G., & Trinks, I. (2016). Pixel versus object – A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. Journal of Archaeological Science: Reports, 5, 485–498.

    Google Scholar 

  • Siepmann, N., Edler, D., & Kühne, O. (2020). Soundscapes in Cartographic Media. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 247–263). Wiesbaden: Springer VS.

    Google Scholar 

  • Sittler, B. (2004). Revealing historical landscapes by using airborne laser scanning – A 3-D modell [sic!] of ridge and furrow in forests near Rastatt (Germany). In M. Thies, B. Koch, H. Spiecker, & H. Weinacker (Eds.), Laser-Scanners for Forests and Landscape Assessment (pp. 258–261). Freiburg: Institute for Forest Growth, Department of Remote Sensing.

    Google Scholar 

  • Song, B., Leidorf, K., & Heller, E. (2019). Luftbildarchäologie. Archäologische Spurensuche aus der Luft. Methoden und Techniken. Klassisch und virtuell. Darmstadt: wbg Theiss.

    Google Scholar 

  • Stratmann, J., Ristea, A., Leitner, M., & Paulus, G. (2020). Exploring Urban “Blightscapes” applying spatial video technology and geographic information system: A case study from Baton Rouge, USA. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 499–517). Wiesbaden: Springer VS.

    Google Scholar 

  • Trier, Ø., Zortea, M., & Tonning, C. (2015). Automatic detection of mound structures in airborne laser scanning data. Journal of Archaeological Science: Reports, 2, 69–79.

    Google Scholar 

  • Trier, Ø., Cowley, D., & Waldeland, A. (2018). Using deep neural networks on airborne laser scanning data – Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeological Prospection, 26(2), 1–11.

    Google Scholar 

  • Verschoof-van der Vaart, W., & Lambers, K. (2019). Learning to look at LiDAR. The use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. Journal of Computer Applications in Archaeology, 2(1), 31–40.

    Google Scholar 

  • Vetter, M. (2020). Technical potentials for the visualization in virtual reality. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 307–317). Wiesbaden: Springer VS.

    Google Scholar 

  • Yokoyama, R., Shirasawa, M., & Pike, R. J. (2002). Visualizing topography by openness. A new application of image processing to digital elevation models. Photogrammetric engineering and remote sensing, 68, 251–266.

    Google Scholar 

  • Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky-View factor as a relief visualization technique. Remote Sensing, 3, 398–415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fabian Meyer-Heß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabian Meyer-Heß, M. (2020). Discovering Forgotten Landscapes. In: Edler, D., Jenal, C., Kühne, O. (eds) Modern Approaches to the Visualization of Landscapes. RaumFragen: Stadt – Region – Landschaft. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-30956-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-30956-5_3

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-30955-8

  • Online ISBN: 978-3-658-30956-5

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics