Skip to main content

Life cycle assessment as a tool for analyzing the CO2 footprint of passenger cars with different powertrains

  • Conference paper
  • First Online:
Internationaler Motorenkongress 2020

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

In order to comply with increasingly strict CO2 emission limits under tightened boundary conditions, automobile manufacturers rely more and more on electrified and purely electric powertrains. This trend can be explained by EU regulations, which do not attribute CO2 emissions to battery electric vehicles (BEV), as BEVs do not cause local CO2 emissions during the use phase. However, in order to evaluate the effective contribution of private transport to climate protection goals, a holistic system perspective on greenhouse gas emissions – i.e. cradle-to-grave instead of tank-to-wheel – is required.

In this regard, life cycle assessment (LCA) is an appropriate tool as it considers the entire product life cycle, which involves production, use and disposal/recycling of the product. Moreover, it allows the evaluation of different environmental impact categories, such as climate change (units of kg CO2 equivalent), agricultural land occupation, natural land transformation, water depletion, etc.

Within this paper, a comprehensive and well-defined goal and scope phase of the LCA – different comparisons of passenger cars will be presented. This includes an internal combustion engine vehicle, both with conventional and renewable fuel, and a BEV, mainly with regard to greenhouse gas emissions as well as the aforementioned additional impact categories. Some of the most striking sensitivities are discussed, including the effect of the chosen amount of vehicle kilometers as a functional unit, the electricity mix in the production and use phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. EUROPÄISCHE UNION: Verordnung (EU) 2019/631 des Europäischen Parlaments und des Rates vom 17. April 2019 zur Festsetzung von CO2-Emissionsnormen für neue Personenkraftwagen und für neue leichte Nutzfahrzeuge und zur Aufhebung der Verordnungen (EG) Nr. 443/2009 und (EU) Nr. 510/2011 (idF v. PE/6/2019/REV/1) (2019).

    Google Scholar 

  2. DAIMLER AG: CO2neutrale Werke ab 2022 | Daimler. URL https://www.daimler.com/nachhaltigkeit/betrieblicher-umweltschutz/co2-neutrale-produktion.html – Überprüfungsdatum 2019-08-29.

  3. VOLKSWAGEN AG: Volkswagen Konzern verpflichtet Lieferanten zur Nachhaltigkeit. URL https://www.volkswagen-newsroom.com/de/pressemitteilungen/volkswagen-konzern-verpflichtet-lieferanten-zur-nachhaltigkeit-5122 – Überprüfungsdatum 2019-08-29

  4. DIN EN ISO 14040. November 2009. Umweltmanagement- Ökobilanz- Grundsätze und Rahmenbedingungen .

    Google Scholar 

  5. DIN EN ISO 14044. Oktober 2006. Umweltmanagement- Ökobilanz- Anforderungen und Anleitungen.

    Google Scholar 

  6. VDI-GESELLSCHAFT ENTWICKLUNG KONSTRUKTION VERTRIEB: VDI 2206–Entwicklungsmethodik für mechatronische Systeme. 2004.

    Google Scholar 

  7. WEBER, Philipp ; TOEDTER, Olaf ; BUCHGEISTER, Jens ; KOCH, Thomas: Ökobilanzie-rung – Kontroversen vorprogrammiert? In: ATZextra (2019)

    Google Scholar 

  8. HISCHIER, Roland: ecoinvent – eine konsistente, transparente und qualitätsgesicherte Hintergrunddatenbank für Ökobilanzen & Co. In: Chemie Ingenieur Technik 83 (2011), Nr. 10, S. 1590–1596

    Google Scholar 

  9. SIMON, Kevin: Lebenszyklusanalyse von Personenkraftwagen hinsichtlich des Abgasreinigungssystems. Karlsruhe, Karlsruher Institut für Technologie, IFKM; ITAS. Bachelorarbeit. 2018

    Google Scholar 

  10. NORDELÖF, Anders ; GRUNDITZ, Emma ; TILLMAN, Anne-Marie ; THIRINGER, Torbjörn ; ALATALO, Mikael: A scalable life cycle inventory of an electrical automotive traction machine—Part I: design and composition. In: The International Journal of Life Cycle Assessment 23 (2018), Nr. 1, S. 55–69

    Google Scholar 

  11. NORDELÖF, Anders ; TILLMAN, Anne-Marie: A scalable life cycle inventory of an electrical automotive traction machine—Part II: manufacturing processes. In: The International Journal of Life Cycle Assessment 23 (2018), Nr. 2, S. 295–313

    Google Scholar 

  12. PETERS, Jens F. ; WEIL, Marcel: Providing a common base for life cycle assessments of Li-Ion batteries. In: Journal of Cleaner Production 171 (2018), S. 704–713

    Google Scholar 

  13. ELLINGSEN, Linda Ager-Wick ; MAJEAU-BETTEZ, Guillaume ; SINGH, Bhawna ; SRIVASTAVA, Akhilesh Kumar ; VALØEN, Lars Ole ; STRØMMAN, Anders Hammer: Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. In: Journal of Industrial Eco-logy 18 (2014), Nr. 1, S. 113–124

    Google Scholar 

  14. BUNDESMINISTERIUM FÜR WIRTSCHAFT UND ENERGIE: Bruttostromerzeugung in Deutsch-land 2018. 2019. URL https://www.bmwi.de/Redaktion/DE/Infografiken/Energie/Energiedaten/Energietraeger/energiedaten-energietraeger-28.html – Überprüfungsdatum 2019-12-15

  15. AURORA ENERGY RESEARCH LIMITED: Stromsektor 2030 - Energiewirtschaftliche Aus-wirkungen von 65% Erneuerbare Energien und einer Reduktion der Kohleverstromung im Einklang mit den Sektorzielen des Klimaschutzplans. 2018

    Google Scholar 

  16. EUROPEAN FEDERATION FOR TRANSPORT AND ENVIRONMENT AISBL: Electric surge: Carmakers’ electric car plans across Europe 2019-2025. URL https://www.transportenvironment.org/sites/te/files/publications/2019_07_TE_electric_cars_report_final.pdf. – Aktualisierungsdatum: 2019 – Überprüfungsdatum 2019-10-01

  17. BROT FÜR DIE WELT: Das weiße Gold : Umwelt- und Sozialkonflikte um den Zukunfts-rohstoff Lithium. URL https://info.brot-fuer-die-welt.de/sites/default/files/blog-downloads/bfdw_analyse_lithium-broschuere_report.pdf – Überprüfungsdatum 2019-12-15

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weber, P., Buchgeister, J., Toedter, O., Koch, T. (2020). Life cycle assessment as a tool for analyzing the CO2 footprint of passenger cars with different powertrains. In: Liebl, J., Beidl, C., Maus, W. (eds) Internationaler Motorenkongress 2020. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-30500-0_26

Download citation

Publish with us

Policies and ethics