Skip to main content

Renewable drop-in fuels as an immediate measure to reduce CO2 emissions of heavy-duty applications

  • Conference paper
  • First Online:
Internationaler Motorenkongress 2020

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

According to a report from the 2018 International Council on Clean Transportation, the transport sector alone is contributing 32 % of the total CO2 emission in the European Union. Here, heavy duty vehicles are responsible for 25 % of the CO2 emissions. The joint project “Robust and Efficient Processes and Technologies for Drop-In Renewable Fuels for Road Transport” (REDIFUEL) aims to produce an ultimate renewable drop-in biofuel, which is compliant with EN590 norms in a sustainable manner. In this project, a holistic fuel characterization is planned to assess the fuel characteristics and engine performance of this new paraffinic biofuel, consisting of about 30 vol% bio-alcohols. This work presents a first characterization and engine testing of a surrogate REDIFUEL mixture representative of the expected real end-product. Density, viscosity and cetane number of different blending proportion of this renewable fuel with diesel are screened, to assess its drop-in capability and the inherent impact on engine performance. With 40 vol% share of REDIFUEL in diesel, both the minimum EN590 requirements for cetane number and density are met. When this blend is compared against diesel, a relative reduction in indicated specific particulate matter, indicated specific carbon monoxide, indicated specific hydrocarbon and CO2 emissions by 12 %, 6 %, 18 %, and 2.7 %, is respectively observed at a selected engine operated point. Numerical simulations show that blending REDIFUEL with diesel enhances the mixture formation, enabling a higher level of oxygen entrainment in the spray plume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. European Environmental Agency – Annual average sea surface temperature anomaly, https://www.eea.europa.eu/data-and-maps/daviz/global-average-air-temperature-anomalies-5#tab-dashboard-02, last accessed 15/10/2019.

  2. CO2-Earth Homepage, https://www.co2.earth/, last accessed 15/10/2019.

  3. European Commission – Causes of climate change, https://ec.europa.eu/clima/change/causes_en, last accessed 15/10/2019.

  4. European Union: Regulation (EU) 2018/956 of the European Parliament and of the Council of 28 June 2018 on the Monitoring and Reporting of CO2 Emissions from and Fuel Consumption of New Heavy Duty Vehicles. Official Journal of the European Union, L 173 (October 15, 2018), https://eur-lex.europa.eu/eli/reg/2018/956/oj.

  5. Delgado, O. and Rodriguez, F.:CO2 Emissions and Fuel Consumption Standards for Heavy-Duty Vehicles in the European Union, Brafing of the Intrnational Councily on Clean Transportation, 04/05/2018, https://theicct.org/…/Efficiency_standards_HDVs_EU_Briefing_20180504.pdf, last accessed 15/10/2019.

  6. Rodríguez, F.: CO2 standards for heavy-duty vehicles in the European Union, Communication of the Intrnational Councily on Clean Transportation, 16/04/2019, https://theicct.org/publications/co2-stds-hdv-eu-20190416, last accessed 15/10/2019.

  7. European Commission: Proposal for a Regulation of the European Parliament and of the Council Setting CO2 Emission Performance Standards for New Heavy-Duty Vehicles, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:284:FIN, last accessed 15/10/2019.

  8. Natural & bio Gas Vehicle Association Homepage: https://www.ngva.eu/medias/co2-emissions-and-carbon-neutrality/, last accessed 15/10/2019.

  9. Mihelic, R.: Fuel and freight efficiency-past, present and future perspectives, SAE International Journal of Commercial Vehicles, 9(2016-01-8020), 120-216.9, (2016).

    Google Scholar 

  10. Heuser, B., Vorholtb, A., Prieto, G., Graziano, B., Schönfeld, S., Messagie, M., Cardellini, G., Tuomi, S., Sittinger, N., Hermanns, R., Ramawamy, S., Kosuru, C.K., Hoffmann, H., Schulz, L., Yadav, J., Weide, M., Schnorbus, T.: REDIFUEL: Robust and Efficient processes and technologies for Drop-In renewable FUELs for road transport, Proceedings of 8th Transport Research Arena TRA 2020, April 27-30, 2020, Helsinki, (submitted).

    Google Scholar 

  11. Seidenspinner, P., Härtl, M., Wilharm, T., and Wachtmeister, G.:Cetane Number Determination by Advanced Fuel Ignition Delay Analysis in a New Constant Volume Combustion Chamber,. SAE Technical Paper, N° 2015-01-0798 (2015).

    Google Scholar 

  12. Ryan, T. and Rudolf, R. M.: Fuel effects on engine combustion and emissions. Flow and combustion in reciprocating engines, pp. 381-420. Springer, Berlin, Heidelberg, 2008.

    Google Scholar 

  13. Cerón, A. A., Renata, N., Vilas, B., Francisco, C. B., and de Castro, H. F.: Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters. Journal of Chemical & Engineering Data, 55(9), 3983–3990 (2010).

    Google Scholar 

  14. EN590 Wordress Homepage: https://en590.wordpress.com/, last accessed 15/10/2019.

  15. Scarcelli, R., Richards, K., Pomraning, E.,Senecal, P. K., Sevik, J. M., Wallner, T.: Cycle-to-cycle variations in multi-cycle engine RANS simulations. Argonne National Lab.(ANL), Argonne, IL (United States), 2016.

    Google Scholar 

  16. Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., Mcdavid, R. M.: Patterson MA (2003) Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE transactions, 1331-1351 (2003).

    Google Scholar 

  17. Veersteg, H. K. and Malalasekera, W.: An introduction to computational fluid dynamics. The finite volume method. Pearson education (2007).

    Google Scholar 

  18. Richards, K. J., Senecal, P. K., and Pomraning, E., CONVERGE 2.4 Manual, Convergent Science, Inc., Madison, WI (2017).

    Google Scholar 

  19. Graziano, B.; Perez, J. M.; Kremer, F.; Pischinger, S.; Reddemann, M. A.; Kneer, R.; Heufer, K. A.; Rohs, H.: Virtual Fuel Approach: a new simulative methodology to analyse effects of fuel properties on mixture formation in compression ignition combustion. In Proceedings of THIESEL Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Valencia, (2014).

    Google Scholar 

  20. Graziano, B., Heuser, H., Kremer, F., Pischinger, S. and Rohs, H.: The oxidation potential number: an index to evaluate inherent soot reduction in DI diesel spray plumes. SAE International Journal of Engines,9(1), 222-236 (2016).

    Google Scholar 

  21. Farrell, J. T., Cernansky, N. P., Dryer, F. L., Law, C. K., Friend, D. G., Hergart, C. A., McDavid, R. M., Patel, A. K., Mueller, C. J., Pitsch, H.: Development of an experimental database and kinetic models for surrogate diesel fuels. SAE Technical Paper, No. 2007-01-0201 (2007).

    Google Scholar 

  22. Choudhury, H. A., Intikhab, S., Kalakul, S., Khan, M., Tafreshi, R., Gani, R., Elbashir, N. O.: Designing a surrogate fuel for gas-to-liquid derived diesel. Energy & Fuels, 31(10), 11266-11279 (2017).

    Google Scholar 

  23. Viswanath, Dabir S., Ghosh, T. K., Dasika, HL Prasad, Nidamarty, VK Dutt, and Kalipatnapu, Y. Rani.: Viscosity of liquids: theory, estimation, experiment, and data. Springer Science & Business Media (2007).

    Google Scholar 

  24. Yaws,C. L.:Thermophysical properties of chemicals and hydrocarbons. William Andrew (2008).

    Google Scholar 

  25. Van Velzen, D., Cardozo, R. L. and Langenkamp, H.: A liquid viscosity-temperature-chemical constitution relation for organic compounds. Industrial & Engineering Chemistry Fundamentals, 11(1), 20-25 (1972).

    Google Scholar 

  26. Yaws, C. L.: The Yaws handbook of vapor pressure: Antoine coefficients. Gulf Professional Publishing (2015).

    Google Scholar 

  27. Dykyj, J., Landolt, H., & Börnstein, R. (1999). Vapor Pressure of Chemicals: Vapor Pressure and Antoine Constants

    Google Scholar 

  28. Yaws, C. L.: Handbook of Thermal Conductivity, Volume 2: Organic Compounds C5 to C7. Elsevier (1995).

    Google Scholar 

  29. B. E., Poling, Prausnitz, J. M. and O’Connel,J. P.: The Properties of Gas and Liquids, McGraw-Hill (2001).

    Google Scholar 

  30. Yaws, C. L. The Yaws handbook of thermodynamic properties for hydrocarbons and chemicals. Gulf Professional Publishing (2006).

    Google Scholar 

  31. Kanaveli, I., Atzemi, M. and Lois, E.: Predicting the viscosity of diesel/biodiesel blends. Fuel 199, 248-263 (2017).

    Google Scholar 

  32. Pischinger, S., Hoppe, F., Krieg, M., Budak, O., Zubel, M., Graziano, B., Heuser, B., Kremer, F.: Fuel Design for Future Combustion Engines – A View from the Cluster Tailor-Made Fuels from Biomass, Proceeding of the 37th Internationales Wiener Motorensymposium, 28-29 (2016).

    Google Scholar 

  33. Graziano, B., Ottenwälder, T., Manderfeld, D., Pischinger, S., Grünefeld, G.: Advanced methodology for the detection of smoke point heights in hydrocarbon flames. Energy and Fuels, 32(3), 3908-3919 (2018).

    Google Scholar 

  34. Heuser, B., Kremer, F., Pischinger, S., and Klankermayer, J. Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass. SAE International Journals of Fuels and Lubricants, 6(3), 922-934(2013).

    Google Scholar 

  35. Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed condition. Progress in Energy and Combustion Science, 25(3), 253-273 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, J. et al. (2020). Renewable drop-in fuels as an immediate measure to reduce CO2 emissions of heavy-duty applications. In: Liebl, J., Beidl, C., Maus, W. (eds) Internationaler Motorenkongress 2020. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-30500-0_24

Download citation

Publish with us

Policies and ethics