Skip to main content

Die Nutzung von KI in Unternehmen aus Sicht der Selbstbestimmungstheorie

  • 21k Accesses

Part of the FOM-Edition book series (FOMEDITION)

Zusammenfassung

Verschiedene Studien beschäftigen sich mit der Akzeptanz und Nutzung von künstlicher Intelligenz (KI). Typischerweise kommt das Technik-Akzeptanz-Modell (TAM) zum Einsatz oder es werden verschiedene Persönlichkeitseigenschaften analysiert, die mit der Risikowahrnehmung in Beziehung stehen. Die Frage, wie Begeisterung in Form von selbstbestimmter Motivation für eine verantwortungsbewusste Anwendung von KI ausgelöst werden kann, wird dabei nicht beantwortet. Ziel des praxisorientierten Beitrags ist es daher, ein Modell zur Anwendung von KI auf Basis der Selbstbestimmungstheorie vorzustellen, das fundamentale Erkenntnisse zur Entstehung von intrinsischer Motivation berücksichtigt. Zentral ist hierfür die Erfüllung der drei psychologischen Grundbedürfnisse Autonomie, Kompetenz und Zugehörigkeit.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Boston: Harvard Business Review Press.

    Google Scholar 

  • Ajzen, I. (1985). A theory of planned behavior. In J. Kuhl & J. Beckmann (Hrsg.), Action control, from cognition to behavior (S. 11–39). Berlin: Springer.

    Google Scholar 

  • Ajzen, I., Fishbein, M., & Heilbroner, R. L. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191–215.

    CrossRef  Google Scholar 

  • Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497–529.

    CrossRef  Google Scholar 

  • Benbashat, L., & Barki, H. (2007). Quo vaids, TAM? Journal of the Association for Informations Systems, 8(4), 212–218.

    Google Scholar 

  • Bitkom. (2019). Industrie 4.0: Künstliche Intelligenz zieht in Fabrikhallen ein. http://www.bitkom.org/Presse/Presseinformation/Industrie-40-Kuenstliche-Intelligenz-zieht-Fabrikhallen-ein. Zugegriffen: 24. Aug. 2019.

  • Brougham, D., & Haar, J. (2018). Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239–257.

    CrossRef  Google Scholar 

  • Dahm, M., & Dregger, A. (2018). Der Einsatz von künstlicher Intelligenz im HR: Die Wirkung und Förderung der Akzeptanz von KI-basierten Recruiting-Tools bei potenziellen Nutzern. In B. Hermeier, T. Heupel, & S. Fichtner-Rosada (Hrsg.), Arbeitswelten der Zukunft. Wie die Digitalisierung unsere Arbeitsplätze und Arbeitsweisen verändert (S. 249–271). Wiesbaden: Springer Gabler.

    Google Scholar 

  • deCharms, R. (1968). Personal causation. New York: Academic.

    Google Scholar 

  • Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105–115.

    CrossRef  Google Scholar 

  • Deci, E. L. (1972). Intrinsic motivation, extrinsic reinforcement, and inequity. Journal of Personality and Social Psychology, 22(1), 113–120.

    CrossRef  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2000). The „What“ and „Why“ of goal pursuits: Human needs and the self- determination of behavior. Psychological Inquiry, 11(4), 227–268.

    CrossRef  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2008). Facilitating optimal motivation and psychological well-being across life’s domains. Canadian Psychology, 19, 14–23.

    CrossRef  Google Scholar 

  • Deci, E. L., Ryan, R. M., & Koestner, R. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–668.

    CrossRef  Google Scholar 

  • Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Gagné, M., Forest, J., Vansteenkiste, M., Crevier-Braud, L., van den Broeck, A., Aspeli, A. K., Bellerose, J., Benabou, C., Chemolli, E., Güntert, S. T., Halvari, H., Indiyastuti, D. L., Johnson, P. A., Molstad, M. H., Naudin, M., Ndao, A., Olafsen, A. H., Roussel, P., Wang, Z., & Westbye, C. (2015). The multidimensional work motivation scale: Validation evidence in seven languages and nine countries. European Journal of Work and Organizational Psychology, 24(2), 178–196.

    CrossRef  Google Scholar 

  • Goertzel, D. B. (2016). AGI revolution: An inside view of the rise of artificial general intelligence. Los Angeles: Humanity + Press.

    Google Scholar 

  • Haivas, S., Hofmans, J., & Pepermans, R. (2013). Volunteer engagement and intention to quit from a self-determination theory perspective. Journal of Applied Social Psychology, 43, 1869–1880.

    CrossRef  Google Scholar 

  • Jákupsstovu, G. (2018). Machine learning is a tool – and people need to learn how to use it. http://www.thenextweb.com/artificial-intelligence/2018/04/09/cassie-kozyrkov-interview. Zugegriffen: 1. Aug. 2019.

  • Manganelli, L., Thibault-Landry, A., Forest, J., & Carpentier, J. (2018). Self-Determination theory can help you generate performance and well-being in the workplace: A review of the literature. Advances in Developing Human Resources, 20(2), 227–240.

    CrossRef  Google Scholar 

  • Miltgen, C. L., Popovic, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biome- trics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support, 56, 103–114.

    CrossRef  Google Scholar 

  • Morikawa, M. (2017). Firms’ expectations about the impact of AI and robotics: Evidence from a survey. Economic Inquiry, 55(2), 1054–1063.

    CrossRef  Google Scholar 

  • PwC. (2019). Künstliche Intelligenz in Unternehmen. http://www.pwc.de/de/digitale-transformation/kuenstliche-intelligenz/kuenstliche-intelligenz-in-unternehmen.html. Zugegriffen: 23. Sept. 2019.

  • Rigby, C. S., & Ryan, R. M. (2018). Self-Determination theory in human resource development: New directions and practical considerations. Advances in Developing Human Resources, 20(2), 133–147.

    CrossRef  Google Scholar 

  • Trépanier, S.-G., Forest, J., Fernet, C., & Austin, S. (2015). On the psychological and motivational processes linking job characteristics to employee functioning: Insights from self-determination theory. Work & Stress, 29(3), 286–305.

    CrossRef  Google Scholar 

  • Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. In M. P. Zanna (Hrsg.), Advances in experimental social psychology (S. 271–360). San Diego: Academic Press.

    Google Scholar 

  • Van den Broeck, A., Ferris, D. L., Chang, C.-H., & Rosen, C. C. (2016). A review of self-determination theory’s basic psychological needs at work. Journal of Management, 42(5), 1195–1229.

    CrossRef  Google Scholar 

  • Van den Broeck, A., Vansteenkiste, M., De Witte, H., Soenens, B., & Lens, W. (2010). Capturing autonomy, competence, and relatedness at work: Construction and initial validation of the Work-related Basic Need Satisfaction scale. Journal of Occupational and Organizational Psychology, 83, 981–1002.

    CrossRef  Google Scholar 

  • Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Science, 39, 273–315.

    CrossRef  Google Scholar 

  • Venkatesh, V., & Davis, F. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.

    CrossRef  Google Scholar 

  • White, R. W. (1959). Motivation reconsidered: The concept of competence. Psychological Review, 66, 297–333.

    CrossRef  Google Scholar 

  • Wissing, B. G., & Reinhard, M.-A. (2018). Individual differences in risk perception of artificial intelligence. Swiss Journal of Psychology, 77(4), 149–157.

    CrossRef  Google Scholar 

  • Yao, M., Zhou, A., & Jia, M. (2018). Applied artificial intelligence: A handbook for business leaders. Middletown: Topbots Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hudecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hudecek, M., Mc Auley, S. (2020). Die Nutzung von KI in Unternehmen aus Sicht der Selbstbestimmungstheorie. In: Buchkremer, R., Heupel, T., Koch, O. (eds) Künstliche Intelligenz in Wirtschaft & Gesellschaft. FOM-Edition. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-29550-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-29550-9_4

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-29549-3

  • Online ISBN: 978-3-658-29550-9

  • eBook Packages: Business and Economics (German Language)