Skip to main content

Akzeptanz von Sprachassistenten zur Steuerung von Smart Home Services

Part of the FOM-Edition book series (FOMEDITION)

Zusammenfassung

Sprachassistenten sind bereits im Alltag eingezogen und helfen, diesen zu managen. So lassen sich Smart Home Services zunehmend über diese neue Mensch-Maschine-Schnittstelle verbal ansteuern, wodurch sich das Management der Services potenziell vereinfachen lässt. Dabei stellt sich die Frage, welche Faktoren die (zukünftige) Nutzung von Sprachassistenten zur Steuerung von Smart Home Services begünstigen oder verhindern. Auf Basis des Value-based Adoption Models (VAM) wurden zunächst Hypothesen abgeleitet und in ein komplexes Untersuchungsmodell überführt. Zur Überprüfung konnte ein Datensatz von mehr als 800 Personen, mit unterschiedlichen Erfahrungen in Bezug auf die bisherige Nutzung von Sprachassistenten, mittels einer Online-Befragung generiert werden. Die Analyse erfolgte mit PLS-SEM. Die Ergebnisse verweisen auf die besondere Bedeutung der Einflussfaktoren Nützlichkeit, Spaß und technische Zuverlässigkeit, während Sicherheitsbedenken keine Rolle spielen.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

    CrossRef  Google Scholar 

  • Aldrich, F. K. (2003). Smart homes, past, present and future. In: R. Harper (Hrsg.), Inside the Smart Home (S. 17–39). London: Springer.

    CrossRef  Google Scholar 

  • Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/BF02723327.

    CrossRef  Google Scholar 

  • Baudier, P., Ammi, C., & Deboeuf-Rouchon, M. (2018). Smart home: Highly-educated students’ acceptance. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2018.06.043. (In press).

    CrossRef  Google Scholar 

  • Bender, W. (1964). Consumer purchase-costs – Do retailers recognize them? Journal of Retailing, 40(1), 1–52.

    Google Scholar 

  • Berg, A. (2018). Home Smart Home. Vortrag des Bitkom-Präsidenten, 07. August 2018. Berlin. https://www.bitkom.org/sites/default/files/file/import/Bitkom-Praesentation-Home-Smart-Home.pdf. Zugegriffen: 26. Sept. 2019.

  • Bogenstahl, C., & Zinke, G. (2017). Digitale Souveränität – ein Mehrdimensionales Handlungskonzept für die Deutsche Wirtschaft. In: V. Wittpfahl (Hrsg.), Digitale Souveränität, Bürger, Unternehmen, Staat (S. 65–82). Berlin: Springer. https://doi.org/10.1007/978-3-662-55796-9.

  • Boßow-Thies, S., Moussa, H., Peetz, S., Sauthoff, M., Wagner, G., & Zimmermann, P. (2011). Smart Home – Zukunftschancen Verschiedener Industrien – Executive Interviews und Repräsentative Umfrage. München: Capgemini Deutschland.

    Google Scholar 

  • Boßow-Thies S., & Panten G. (2009). Analyse Kausaler Wirkungszusammenhänge mit Hilfe von Partial Least Squares (PLS). In: S. Albers, D. Klapper, U. Konradt, A. Walter, & J. Wolf (Hrsg.), Methodik der Empirischen Forschung (S. 365–380). Wiesbaden: Gabler. https://doi.org/10.1007/978-3322-96406-9_24.

  • Chang, T. Z., & Wildt, A. R. (1994). Price, product information, and purchase intention: An empirical study. Journal of the Academy of Marketing Science, 22(1), 16–27.

    CrossRef  Google Scholar 

  • Chin, W. W. (1995). Partial least squares is to LISREL as principal components analysis is to common factor analysis. Technology Studies, 2(2), 315–319.

    Google Scholar 

  • Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In: G. A. Marcoulides (Hrsg.), Modern methods for business research (S. 295–336). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chen, B. X. (2019). Hi, Alexa. How Do I Stop You From Listening In On Me? New York Times. https://www.nytimes.com/2019/08/21/technology/personaltech/alexa-siri-google-assistant-listen.html. Zugegriffen: 29. Sept. 2019.

  • Chunxiang, L. (2014). Study on mobile commerce customer based on value adoption. Journal of Applied Science, 14(9), 901–909.

    CrossRef  Google Scholar 

  • Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: HarperCollins Publishers.

    Google Scholar 

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    CrossRef  Google Scholar 

  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.

    CrossRef  Google Scholar 

  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x.

    CrossRef  Google Scholar 

  • Deci, E. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105–115.

    CrossRef  Google Scholar 

  • Diamantopoulos, A., & Riefler, P. (2008). Formative Indikatoren: Einige Anmerkungen zu ihrer Art, Validität und Multikollinearität. ZFB Zeitschrift für Betriebswirtschaft, 78(11), 1183–1196.

    CrossRef  Google Scholar 

  • Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269–277. https://doi.org/10.1509/jmkr.38.2.269.18845.

    CrossRef  Google Scholar 

  • Diegel, O., Lomiwes, G., Messom, C., Moir, T., Ryu, H., Thomsen, F., Yoganathan, V., & Zhenqing, L. (2005). A bluetooth home design @ NZ: Four Smartness. In: A. Sloane (Hrsg.), Home Oriented Informatics and Telematics: Proceedings of the IFIP WG 9.3 HOIT2005 Conference, 13.–15. April 2005 (S. 87–99). Boston: Springer.

    Google Scholar 

  • Eberl, M. (2004). Formative und Reflektive Indikatoren im Forschungsprozess; Entscheidungsregeln und die Dominanz des Reflektiven Modells. Schriften zur Empirischen Forschung und Quantitativen Unternehmensplanung, München.

    Google Scholar 

  • Firth, S. K., Fouchal, F., Kane, T., Dimitriou, V., & Hassan, T. (2013). Decision support systems for domestic retrofit provision using smart home data streams. In: CIB W78 2013 30th International Conference on Applications of IT in the AEC Industry, Move Towards Smart Buildings: Infrastructures and Cities, 9.-12. Oktober 2013. Beijing.

    Google Scholar 

  • Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley.

    Google Scholar 

  • Fornell, C., & Bookstein, L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452.

    CrossRef  Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312.

    CrossRef  Google Scholar 

  • Gefen, D., & Straub, D. (2003). Managing user trust in B2C e-services. E-Service Journal, 2(2), 7–24. https://doi.org/10.2979/esj.2003.2.2.7.

  • Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., Radatz, J., Yee, M., Porteous, H., & Springsteel, F. (1991). IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. Piscataway: IEEE Press.

    Google Scholar 

  • Goksel Canbek, N., & Mutlu, M. E. (2016). On the track of artificial intelligence: Learning with intelligent personal assistants. Journal of Human Sciences, 13(1), 592–601. https://doi.org/10.14687/ijhs.v13i1.3549.

  • Grewal, D., Monroe, K. B., & Krishnan, R. (1998). The effects of price-comparison advertising on buyers’ perceptions of acquisition value, transaction value, and behavioral intentions. Journal of Marketing, 62(2), 45–59. https://doi.org/10.1177/002224299806200204.

    CrossRef  Google Scholar 

  • Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks: Sage.

    Google Scholar 

  • Han, S., & Yang, H. (2018). Understanding adoption of intelligent personal assistants: A parasocial relationship perspective. Industrial Management & Data Systems, 118(3), 618–636. https://doi.org/10.1108/IMDS-05-2017-0214.

    CrossRef  Google Scholar 

  • Harman, H. H. (1976). Modern factor analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.

    CrossRef  Google Scholar 

  • Holahan, P. J., Lesselroth, B. J., Adams, K., Wang, K., & Church, V. (2015). Beyond technology acceptance to effective technology use: A parsimonious and actionable model. Journal of the American Medical Informatics Association, 22(3), 718–729.

    CrossRef  Google Scholar 

  • Hoy, M. B. (2018). Alexa, Siri, Cortana, and More: An introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81–88. https://doi.org/10.1080/02763869.2018.1404391.

  • Hörner, T. (2019). Marketing mit Sprachassistenten: So setzen Sie Alexa, Google Assistant & Co Strategisch Erfolgreich ein. Wiesbaden: Springer.

    CrossRef  Google Scholar 

  • Hsu, C.-L., & Lin, J. C.-C. (2016). An empirical examination of consumer adoption of internet of things services: Network externalities and concern for information privacy perspectives. Computers in Human Behavior, 62, 516–527. https://doi.org/10.1016/j.chb.2016.04.023.

  • Hubert, M., Blut, M., Brock, C., Zhang, R. W., Koch, V., & Riedl, R. (2018). The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing, 53(6), 1073–1098. https://doi.org/10.1108/EJM-12-2016-0794.

    CrossRef  Google Scholar 

  • Hulland, J. (1999). Use of Partial Least Squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204.

    CrossRef  Google Scholar 

  • Huotari, K., & Hamari, J. (2012). Defining gamification – A service marketing perspective. Proceedings of the 16th International Academic MindTrek Conference (S. 17–22), 03.-05. Oktober 2012. Finnland.

    Google Scholar 

  • Initiative D21. (2019). Digital Index 2018/2019, Jährliches Lagebild zur Digitalen Gesellschaft. https://initiatived21.de/app/uploads/2019/01/d21_index2018_2019.pdf. Zugegriffen: 28. Sept. 2019.

  • Islam, A. K. M. N. (2016). E-Learning system use and its outcomes: Moderating role of perceived compatibility. Telematics and Informatics, 33(1), 48–55.

    CrossRef  Google Scholar 

  • Jiang, J., Hassan Awadallah, A., Jones, R., Ozertem, U., Zitouni, I., Gurunath Kulkarni, R., & Khan, O. Z. (2015). Automatic online evaluation of intelligent assistants. Proceedings of the 24th International Conference on World Wide Web (S. 506–516), 8.-22. Mai 2015. Florenz.

    Google Scholar 

  • Kahnemann, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.

    CrossRef  Google Scholar 

  • Keil, M., Beranek, P. M., & Konsynski, B. R. (1995). Usefulness and ease of use: Field study evidence regarding task considerations. Decision Support Systems, 13(1), 75–91.

    CrossRef  Google Scholar 

  • Kelman, H. C. (1958). Compliance, identification, and internalization: Three processes of attitude change. Journal of Conflict Resolution, 2(1), 51–60.

    CrossRef  Google Scholar 

  • Kim, H.-W., Chan, H. C., & Gupta, S. (2007). Value-Based adoption of mobile internet: An empirical investigation. Decision Support Systems, 43(1), 111–126.

    CrossRef  Google Scholar 

  • Kim, D., Chun, H., & Lee, H. (2014). Determining the factors that influence college students’ adoption of smartphones. Journal of the Association for Information Science and Technology, 65(3), 578–588. https://doi.org/10.1002/asi.22987.

  • Kim, Y., Park, Y., & Choi, J. (2017). A study on the adoption of IoT smart home service: Using value-based adoption model. Total Quality Management & Business Excellence, 28(9–10), 1149–1165. https://doi.org/10.1080/14783363.2017.1310708.

    CrossRef  Google Scholar 

  • Kiseleva, J., Williams, K., Jiang, J., Hassan Awadallah, A., Crook, A.C., Zitouni, I., & Anastasakos, T. (2016). Understanding user satisfaction with intelligent assistants. Proceedings of the 2016 ACM on Conference on Human Information Interaction and Retrieval (S. 121–130), 13.-17. März 2016. Carrboro.

    Google Scholar 

  • Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205–223.

    CrossRef  Google Scholar 

  • Lin, T.-C., Lee, C.-K., & Lin, J. C.-C. (2010). Determinants of enterprise 2.0 adoption: A value-based adoption model approach VAM. 2010 International Conference on Information Society (i-Society) (S. 12–18), 28.-30. Juni 2010. London.

    Google Scholar 

  • Lin, T.-C., Wu, S., Hsu, J. S.-C., & Chou, Y.-C. (2012). The integration of value-based adoption and expectation-confirmation models: An example of IPTV continuance intention. Decision Support Systems, 54(1), 63–75.

    CrossRef  Google Scholar 

  • Lu, Y., Cao, Y., Wang, B., & Yang, S. (2011). A study on factors that affect users’ behavioral intention to transfer usage from the offline to the online channel. Computers in Human Behavior, 27(1), 355–364.

    CrossRef  Google Scholar 

  • Lu, J., Liu, C., Yu, C.-S., & Wang, K. (2008). Determinants of accepting wireless mobile data services in China. Information & Management, 45(1), 52–64.

    CrossRef  Google Scholar 

  • Lutolf, R. (1992). Smart home concept and the integration of energy meters into a home based system. In: Seventh International Conference on Metering Apparatus and Tariffs for Electricity Supply, 17.-19. November 1992. Glasgow.

    Google Scholar 

  • MacKenzie, S. B., & Podsakoff, P. M. (2012). Common method bias in marketing: Causes, mechanisms, and procedural remedies. Journal of Retailing, 88(4), 542–555. https://doi.org/10.1016/j.jretai.2012.08.001.

    CrossRef  Google Scholar 

  • Mani, Z., & Chouk, I. (2017). Drivers of consumers’ resistance to smart products. Journal of Marketing Management, 33(1–2), 76–97. https://doi.org/10.1080/0267257X.2016.1245212.

    CrossRef  Google Scholar 

  • Marikyan, D., Papagiannidis, S., & Alamanos, E. (2019). A systematic review of the smart home literature: A user perspective. Technological Forecasting and Social Change, 138, 139–154.

    CrossRef  Google Scholar 

  • Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173–191. https://doi.org/10.1287/isre.2.3.173.

    CrossRef  Google Scholar 

  • Milivojša, S., Ivanović, S., Erić, T., Antić, M., & Smiljković, N. (2017). Implementation of voice control interface for smart home automation system. In: 2017 IEEE 7th International Conference on Consumer Electronics – Berlin (ICCCE-Berlin), 03.-06. September 2017. Berlin.

    Google Scholar 

  • Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222.

    CrossRef  Google Scholar 

  • Moorthy, A. E., & Vu, K.-P. L. (2015). Privacy concerns for use of voice activated personal assistant in the public space. International Journal of Human-Computer Interaction, 31(4), 307–333.

    CrossRef  Google Scholar 

  • Nasirian, F., Ahmadian, M., & Lee, O.-K. (2017). AI-based voice assistant systems: evaluating from the interaction and trust perspectives. In: 23rd Americas Conference on Information Systems (AMCIS 2017), 10.-12. August 2017. Boston.

    Google Scholar 

  • Norberg, P. A., Horne, D. R., & Horne, D. A. (2007). The privacy paradox: Personal information disclosure intentions versus behaviors. The Journal of Consumer Affairs, 41(1), 100–126.

    CrossRef  Google Scholar 

  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.

    Google Scholar 

  • Pal, D., Funilkul, S., Charoenkitkarn, N., & Kanthamanon, P. (2018). Internet-of-things and smart homes for elderly healthcare: An end user perspective. IEEE Access, 6, 10483–10496.

    CrossRef  Google Scholar 

  • Park, E., Cho, Y., Han, J., & Kwon, S. J. (2017). Comprehensive approaches to user acceptance of internet of things in a smart home environment. IEEE Internet of Things Journal, 4(6), 2342–2350.

    CrossRef  Google Scholar 

  • Park, E., Kim, S., Kim, Y., & Kwon, S. J. (2018). Smart home services as the next mainstream of the ICT industry: Determinants of the adoption of smart home service. Universal Access in the Information Society, 17(1), 175–190. https://doi.org/10.1007/s10209-017-0533-0.

    CrossRef  Google Scholar 

  • Park, E., Kim, H., & Ohm, J. Y. (2015). Understanding driver adoption of car navigation systems using the extended technology acceptance model. Behaviour & Information Technology, 34(7), 741–751.

    CrossRef  Google Scholar 

  • Peine, A. (2008). Technological paradigms and complex technical systems – The case of smart home. Research Policy, 37(3), 508–529.

    CrossRef  Google Scholar 

  • Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879.

    CrossRef  Google Scholar 

  • Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: The marketing problem and its solutions. Journal of Consumer Marketing, 6(2), 5–14. https://doi.org/10.1108/EUM0000000002542.

    CrossRef  Google Scholar 

  • Raman, A., & Don, Y. (2013). Preservice teachers’ acceptance of learning management software: An application of the UTAUT2 model. International Education Studies, 6(7), 157–164.

    CrossRef  Google Scholar 

  • Rogers, E. M. (2003). Diffusion of innovations (5. Aufl.). The Free Press.

    Google Scholar 

  • Sano, S., Kaji, N., & Sassano, M. (2016). Prediction of prospective user engagement with intelligent assistants. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Bd. 1: Long Papers), 07.-12. August 2016. Berlin.

    Google Scholar 

  • Splendid Research. (2019). Smart home monitor 2019. Splendid Research GmbH. Hamburg 2019. https://www.splendid-research.com/de/smarthome.html. Zugegriffen: 18. Okt. 2019.

  • Statista (2020). Smart home | Digital markets. Marktprognose für Smart Home in der Welt bis 2023. https://de.statista.com/outlook/279/137/smart-home/deutschland. Zugegriffen: 12. Mai 2020.

  • Statistisches Bundesamt (2019). Verteilung der Privathaushalte in Deutschland nach monatlichem Haushaltsnettoeinkommen im Jahr 2018. https://de.statista.com/statistik/daten/studie/3048/umfrage/privathaushalte-nach-monatlichem-haushaltsnettoeinkommen/. Zugegriffen: 27. Sept. 2019.

  • Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85–92. https://doi.org/10.1287/mnsc.42.1.85.

    CrossRef  Google Scholar 

  • Venkatesh, V., & Davis, F. D. (2000). A Theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926.

    CrossRef  Google Scholar 

  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.

    CrossRef  Google Scholar 

  • Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of information technology. MIS Quarterly, 36(1), 157–178.

    CrossRef  Google Scholar 

  • Weiber, R., & Mühlhaus, D. (2014). Strukturgleichungsmodellierung. Eine Anwendungsorientierte Einführung in die Kausalanalyse von AMOS, SmartPLS und SPSS. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-35012-2.

  • Wendel, M. (2019). Alexa, Siri, Google, Cortana und Bixby Sprachsteuerung – Die 5 beliebtesten Sprachassistenten im Überblick. https://www.homeandsmart.de/smart-home-sprachassistenten. Zugegriffen: 31. Aug. 2019.

  • Yang, H., Lee, W., & Lee, H. (2018). IoT smart home adoption: The importance of proper level automation. Journal of Sensors, 2018, Article ID 6464036, 1–11. https://doi.org/10.1155/2018/6464036.

  • Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: An extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68–89. https://doi.org/10.1108/IMDS-01-2016-0017.

    CrossRef  Google Scholar 

  • Youn, S., & Lee, K.-H. (2019). Proposing value-based technology acceptance model: Testing on paid mobile media service. Fashion and Textiles, 6(13). https://doi.org/10.1186/s40691-018-0163-z.

  • Yu, J., Lee, H., Ha, I., & Zo, H. (2017). User acceptance of media tablets: An empirical examination of perceived value. Telematics and Informatics, 34(4), 206–223. https://doi.org/10.1016/j.tele.2015.11.004.

    CrossRef  Google Scholar 

  • Zahedi, F. (1987). Reliability of information systems based on the critical success factors – Formulation. MIS Quarterly, 11(2), 187–203.

    CrossRef  Google Scholar 

  • Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2–22.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Krol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krol, B., Boßow-Thies, S. (2020). Akzeptanz von Sprachassistenten zur Steuerung von Smart Home Services. In: Buchkremer, R., Heupel, T., Koch, O. (eds) Künstliche Intelligenz in Wirtschaft & Gesellschaft. FOM-Edition. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-29550-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-29550-9_27

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-29549-3

  • Online ISBN: 978-3-658-29550-9

  • eBook Packages: Business and Economics (German Language)