ACDV - Association Chimie du Végétal (2014): Practical recommendations for the environmental assessment of bio-based chemical products. http://www.chimieduvegetal.com/wpcontent/uploads/2016/03/T-FichesSynth-A4Ang-DEF-BD.pdf (Abgerufen am 19.10.2017)
Ahlgren S., Björklund A., Ekman A., Karlsson H., Berlin J., Börjesson P., Ekvall T., Finnveden G., Janssen M., Strid I. (2013) LCA of Biorefineries – Identification of key issues and methodological recommendations. Report No 2013:25, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden
Google Scholar
Ahlgren S., Berlin J., Ekman A., Björklund A., Karlsson H., Börjesson P., Strid I. (2015) Review of methodological choices in LCA of biorefinery systems – key issues and recommendations. Biofuels, Bioproducts and Biorefining 9(5):606–19
CrossRef
Google Scholar
Akiyama M., Tsuge T., Doi Y. (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polymer Degradation and Stability 80(1):183–194
CrossRef
Google Scholar
Akanuma Y., Selke S.E.M., Auras R. (2014) A preliminary LCA case study: comparison of different pathways to produce purified terephthalic acid suitable for synthesis of 100 % bio- based PET. International Journal of Life Cycle Assessment 19(6):1238-1246
CrossRef
Google Scholar
Alvarenga R.A.F., Dewulf J., De Meester S., Wathelet A., Villers J., Thommeret R., Hruska Z. (2013) Life cycle assessment of bioethanol-based PVC. Part 1. Biofuels, Bioproducts & Biorefining 7(4):396–405
Google Scholar
Beck T., Albrecht S., Lindner J.P., Bos U., Knüpffer E. (2017) Handlungsempfehlungen für Ökobilanzen biobasierter Produkte. Abteilung Ganzheitliche Bilanzierung GaBi, Institut für Akustik und Bauphysik (IABP) Universität Stuttgart
Google Scholar
Becker N., Mudersbach M., Spierling S., Krieg H., Albrecht S., Endres H.-J. (2018): Handlungsempfehlungen zur Ökobilanzierung von biobasierten Kunststoffen, BiNa, Förderkennzeichen FKZ 01UT1430A
Google Scholar
Bier J., Verbeek J., Lay M. (2011) Life cycle assessments of bioplastics: Applications and issues. International Journal of Environmental, Cultural, Economic and Social Sustainability 7:145–157
Google Scholar
Bohlmann G. M. (2004) Biodegradable Packaging Life-Cycle Assessment. Environmental Progress & Sustainable Energy 23(4):342–346
Google Scholar
Boustead I. (2005) Eco-profiles of the European Plastics Industry. Plastics Europe
Google Scholar
Chen G.Q., Patel M.K. (2012) Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chemical Reviews 112(4):2082-2099
CrossRef
Google Scholar
Cheroennet N., Pongpinyopa, S., Leejarkpai T., Suwanmanee U. (2016) A trade-off between carbon and water impacts in bio-based box production chains in Thailand: A case study of PS, PLAS, PLAS/starch, and PBS. Journal of Cleaner Production 167:987-1001
CrossRef
Google Scholar
Cherubini F., Strømman A. (2011) Life Cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology 102:437–451
CrossRef
Google Scholar
Choi B., Yoo S., Park S. (2018) Carbon Footprint of Packaging Films Made from LDPE, PLA, and PLA/PBAT Blends in South Korea. Sustainability 10(7):2369
CrossRef
Google Scholar
Cristobal J., Matos C.T., Aurambout J-P., Manfredi S., Kavalov B. (2016) Environmental sustainability assessment of bioeconomy value chains. Biomass and Bioenergy 89:159–171
CrossRef
Google Scholar
Devaux J.F., Le G., Pees B. Application of Eco-profile methodology to Polyamide 11. Arkema Report. https://www.extremematerials-arkema.com/export/sites/technicalpolymers/.content/medias/downloads/article-reprints/rilsan-article-reprints/RilsanFamily_eco-profile_article.pdf
DIN 16760 (2015): Biobasierte Produkte – Ökobilanzen; Deutsche Fassung, EN 16760:2015
Google Scholar
Eco-Profiles (2011): PlasticsEurope: Life Cycle Inventory (LCI) Methodology and Product Category Rules (PCR) for Uncompounded Polymer Resins and Reactive Polymer Pre-cursors. Version 2.0 (April 2011)
Google Scholar
Essel R., Carus M. (2012) Meta-Analyse von Ökobilanzen für bio-basierte Polymere in der Produktion von Proganic®. Nova-Institut GmbH
Google Scholar
European Committee for Standardization (2019) – CEN/TC 411 – Bio-based Products https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:874780&cs=112703B035FC937E906D8EFA5DA87FAB8
Evonik Industries AG (2013) Life Cycle Assessment of biobased polyamides VESTAMID Terra. Evonik
Google Scholar
Franklin Associates (2011) Cradle to gate life cycle inventory of nine plastic resins and four polyurethane precursors. Franklin Associates, Prairie Village, Kansas
Google Scholar
Gerngross T. U. & Slater S. C. (2000) How green are green plastics?. Industrial Biotechnology 6(4):212–224
Google Scholar
Gonzalez M.N.G., Levi M.,Turri S. (2017) Development of polyester binders for the production of sustainable polyurethane coatings: Technological characterization and life cycle assessment. Journal of Cleaner Production 164:171–178
CrossRef
Google Scholar
Grabowski A., Selke S., Aura, R., Patel K., Martin Ramani N. (2015) Life cycle inventory data quality issues for bioplastics feedstocks. The International Journal of Life Cycle Assessment 20:584–596
CrossRef
Google Scholar
Groot W.J., Borén T. (2010) Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. International Journal of Life Cycle Assessment 15(9):970–984
CrossRef
Google Scholar
Harding K.G., Dennis J.S., von Blottnitz H., Harrison S.T.L. (2007) Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology 130(1):57–66
CrossRef
Google Scholar
Heimersson S., Morgan-Sagastume F., Peters G.M., Werker A., Svanström M. (2014) Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnology 31(4):383–94
CrossRef
Google Scholar
Hohenschuh W.; Kumar D.; Murthy G.S. (2014) Economic and cradle-to-gate life cycle assessment of poly-3-hydroxybutyrate production from plastic producing, genetically modified hybrid poplar leaves. Journal of renewable and sustainable energy 063113(2014)
Google Scholar
Horne R., Grant T. (2009) Life cycle assessment and agriculture: challenges and prospects in Horne, R., Grant, T., Verghese, K. (ed.) Life Cycle Assessment: Principles, Practice and Prospects. CSIRO Publishing, Melbourne, Australia, S. 107–124
Google Scholar
Hottle T.A., Bilec M.M., Landis A.E. (2013) Sustainability assessments of bio-based polymers. Polymer Degradation and Stability 98:1898-1907
CrossRef
Google Scholar
IfBB, Abschlussbericht zum Projekt „Identifizierung und praktische Umsetzung von Synergien im Bereich der Biopolymere, Biopolymerfasern und Verbundwerkstoffe inklusive Optimierung zugehöriger Prozesstechnik und Verarbeitung zur anwendungsorientierten Weiterentwicklung“, 2017, FKZ: 22024711 (11NR247), link: https://www.fnr-server.de/ftp/pdf/berichte/22024711.pdf
ILCD (2010) European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. First edition March 2010. EUR 24708 EN. Publications Office of the European Union, Luxembourg
Google Scholar
ISO 14020:2000-09: International Organization for Standardization – Umweltkennzeichnungen und -deklarationen – Allgemeine Grundsätze
Google Scholar
ISO 14025:2006-07: International Organization for Standardization – Umweltkennzeichnungen und -deklarationen – Typ III Umweltdeklarationen – Grundsätze und Verfahren
Google Scholar
ISO 14040:2006: International Organization for Standardization, Environmental Management – Life Cycle Assessment – Principles and Framework (ISO 14040:2006). European Committee for Standardization, Brussels, Belgium (2006)
Google Scholar
ISO 14044:2006: International Organization for Standardization, Environmental Management – Life Cycle Assessment – Requirements and Guidelines (ISO 14044:2006). European Committee for Standardization, Brussels, Belgium (2006)
Google Scholar
ISO 14067 (2014): DIN ISO 14067. Treibhausgase – Carbon Footprint von Produkten – Anforderungen an und Leitlinien für quantitative Bestimmung und Kommunikation. Deutsche und Englische Fassung CEN ISO/TS 14067:2014
Google Scholar
Jørgensen S. V., Nielsen P. H., Kløverpris J. H., Hauschild M. Z. (2014) Environmental assessment of biomass based materials: With special focus on the climate effect of temporary carbon storage. Department of Management Engineering, Technical University of Denmark
Google Scholar
Karvinen H. (2015) Life Cycle Assessment and Technical Performance of Recycled and Bio-based Plastics. Aalto University, Master Thesis
Google Scholar
Kendall A. (2012) A life cycle assessment of biopolymer production from mateial recovery facility residuals. Resources, Conservation and Recycling 61:69–74
CrossRef
Google Scholar
Kim S., Dale B. E. (2005) Life Cycle Assessment Study of Biopolymers (Polyhydrxyalkanoates) Derived from No-Tilled Corn. International Journal of Life Cycle Assessment 10(3):200–210
CrossRef
Google Scholar
Kim S., Dale B.E. (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: A Life Cycle Perspective. Environmental Science & Technology 42(20):7690-7695
CrossRef
Google Scholar
Kuczenski B, Geyer R. (2011) Life Cycle Assessment of Polyethylene Terephthalate (PET) Beverage Bottles Consumed in the State of California. California Department of Resources Recycling and Recovery
Google Scholar
Kurdikar D., Fournet L., Slater S.C., Paster M., Gruys K.J., Gerngross T.U., Coulon R. (2000) Greenhouse Gas Profile of a Plastic Material Derived from a Genetically Modified Plant. Journal of Industrial Ecology 4(3):107–122
CrossRef
Google Scholar
La Rosa A.D. (2016) Life Cycle Assessment of biopolymers. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials
Google Scholar
Lehtinen H., Saarentaus A., Rouhiainen J., Pitts M., Azapagic A. (2011) A Review of LCA Methods and Tools and their Suitability for SMEs. Biochem Project
Google Scholar
Liptow C., Carus M., Lozanovski A., Lindner J.-P., Essel R., Albrecht S., Held M. (2017): Handlungsempfehlungen für die Durchführung und Umsetzung von Ökobilanzen für die stoffliche Nutzung von Biomasse im Spannungsfeld der Politik (ÖkoStoff) – Schwerpunkt Wirkungskategorie Klimawandel
Google Scholar
Manfredi S., Allacker K., Chomkhamsri K., Pelltier N., de Souza D.M. (2012) Product Environmental Footprint (PEF) Guide Ref. Ares(2012)873782
Google Scholar
McKone T.E., Nazaroff W.W., Berck P., Auffhammer M., Lipman T., Torn M.S., Masanet E., Lobscheid A., Santero N., Mishra U., Barrett A., Bomberg M., Fingerman K., Scown C., Strogen B., Horvath A. (2011) Grand Challenges for Life-Cycle Assessment of Biofuels. Environmental science & technology 45:1751-6
CrossRef
Google Scholar
McManus M.C., Taylor C.M., Mohr A., Whittaker C., Scown C., Borrion A., Glithero N., Yin Y. (2015) Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels. International Journal of Life Cycle Assessment 20(10):1399-1414
CrossRef
Google Scholar
Milá I Canals L. M., Azapagic A., Doka G., Jefferies D., King H., Mutel C., Nemecek T., Roches A., Sim S., Stichnothe H., Thoma G., Williams A. (2011) Approaches for Addressing Life Cycle Assessment Data Gaps for Bio-based Products. Journal of Industrial Ecology 15:707–725
CrossRef
Google Scholar
Muench S., Guenther E. (2013) A systematic review of bioenergy life cycle assessments. Applied Energy 112:257–273
CrossRef
Google Scholar
Nikolic S., Kiss F., Valentina M., Bukurov M., Stankovic J. (2015) Corn-based polylactide vs. PET bottles – Cradle-to-gate LCA and implications. Materiale Plastice 52(4):517–521
Google Scholar
Novamont S. p. A. (2012) Environmental Product Declaration – Mater-Bi CF05S. EPD
Google Scholar
Papong S., Malakul P., Trungkavashirakun R., Wenunun P., Chom-in T., Nithitanakul M., Sarobol E. (2014) Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production 65:539–550
CrossRef
Google Scholar
PAS2050:2008 (2011): British Standards, Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. PAS 2050:2008. Publicly Available Specification. BS, London (2011)
Google Scholar
Patel M., Crank M., Dornburg V., Hermann B., Roes L., Hüsing B., Overbeek L., Terragni F., Recchia E. (2006) Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources – The Potential of White Biotechnology. Utrecht University. Final Report
Google Scholar
Pawelzik P., Carus M., Hotchkiss J., Narayan R., Selke S., Wellisch M., Weiss M., Wicke B., Patel M.K (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations. Resources, Conservation and Recycling 73:211–228
CrossRef
Google Scholar
PEF (2013) EC JRC: Empfehlung der Kommission vom 9. April 2013 für die Anwendung gemeinsamer Methoden zur Messung und Offenlegung der Umweltleistung von Produkten und Organisationen. Amtsblatt der EU, 2013/179/EU (2013)
Google Scholar
PEFCR v6.1 (2017) European Commission: PEFCR Guidance document, – Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.1, 2017.
Google Scholar
Petchprayul S., Pomthong M., Nithitanakul M., Papong S., Wenunun P., Likitsupin W., Chom-in T., Trungkavashirakun R., Sarobol E. (2012) Life Cycle Management of Bioplastics for a Sustainable Future in Thailand: Samed Island Model. Chemical Engineering Transactions 29: 265–270
Google Scholar
Plastics Europe (2014) Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers
Google Scholar
Posen D., Jaramillo P., Landis A.E., Griffin M.W. (2017) Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environment Research Letters 12(3):034024
CrossRef
Google Scholar
Putri R.E. (2018) The water and land footprint of bioplastics. University of Twente. Master Thesis
Google Scholar
Rostkowski K.H., Criddle C.S., Lepech M.D. (2012) Cradle-to-Gate Life Cycle Assessment for a Cradle-to-Cradle Cycle: Biogas-to-Bioplastic (and Back). Environmental Science & Technology 46:9822–9829
Google Scholar
Sakai K., Taniguchi M., Miura S., Ohara H., Matsumoto T., Shirai Y. (2004) Making Plastics from Garbage: A Novel Process for Poly-L-Lactate Production from Municipal Food Waste. Journal of Industrial Ecology 7(3–4):63–74
Google Scholar
Saraiva A. (2017) System boundary setting in life cycle assessment of biorefineries. A review. International Journal of Environmental Science and Technology 14(2):435–452
Google Scholar
Sauer B. (2012): Life Cycle Inventory Modeling in Practice. In: Life Cycle Assessment Handbook-A Guide for environmentally sustainable products. Mary Ann Curran (Editor), Wiley, USA, 2012. P.43-65 Semba T., Sakai Y., Sakanishi T., Inaba A. (2018): Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate, Journal of Cleaner Production 195. https://doi.org/10.1016/j.jclepro.2018.05.069
CrossRef
Google Scholar
Semba T., Sakai Y., Skanishi T., Inaba A. (2018): Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate. Journal of Cleaner Production: 195. https://doi.org/10.1016/j.jclepro.2018.05.069
CrossRef
Google Scholar
Shen L., Worrell E., Patel M.K. (2012) Comparing life cycle energy and GHG emissions of bio- based PET, recycled PET, PLA and man- made cellulose. Biofuels, Bioproducts & Biorefining 6(6):625–639
CrossRef
Google Scholar
Singh A., Pant D., Korres N., Nizami A.S., Prasad S., Murphy J. (2009). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource technology 101:5003-12
CrossRef
Google Scholar
Spierling S., Knüpffer E., Behnsen H., Mudersbach M., Krieg H., Springer S., Albrecht S., Herrmann C., Endres H.-J. (2018): Bio-based plastics – A review of environmental, social and economic impact assessments. Journal of Cleaner Production (2018), https://doi.org/10.1016/j.jclepro.2018.03.014
CrossRef
Google Scholar
Taengwathananukool S., Chidthaisong A., Gheewala S.H., Chiarakorn S., Theinsathid P. (2013) Environmental Impact Assessment of Bioplastic and Melamine-based Coffee Cup Production. Journal of Sustainable Energy & Environment 4(3):103–111
Google Scholar
Tecchio P., Freni P., De Benedetti B., Fenouillot F. (2016) Ex-ante life cycle assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production 112(1):316–325
CrossRef
Google Scholar
Tsiropoulos I., Faaij A.P.C., Lundquist L., Schenker U., Briois J. F., Patel M.K. (2015) Life cycle impact assessment of bio- based plastics from sugarcane ethanol. Journal of Cleaner Production, 90:114–127
CrossRef
Google Scholar
UN CPC 347 (2015) The International EPD® System: PRODUCT GROUP CLASSIFICATION: UN CPC 347 PLASTICS IN PRIMARY FORMS. Version 2.11 (2015). GPI (2015): General Programme Instructions for the International EPD System – Version 2.5
Google Scholar
Vidal R., Martinez P., Mulet E., Gonzalez R., Lopez-Mesa B., Fowler P., Fang J.M. (2007) Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. Journal of Polymers and the Environment 15:159–168
CrossRef
Google Scholar
Vink E.T.H., Rábago K.R., Glassner D.A., Gruber P.R. (2003) Applications of life cycle assessment to NatureWorks polylactide (PLA) production. Polymer Degradation and Stability 80(3):403–419
CrossRef
Google Scholar
Vink E.T.H., Glassner D.A., Kolstad J.J., Wooley R.J., O’Connor R.P. (2007) The eco-profile for current and near-future NatureWorks polylactide (PLA) production. Industrial Biotechnology 3(1):58–81
CrossRef
Google Scholar
Vink E.T.H., Davies S., Kolstad J.J. (2010) The eco- profile for current Ingeo polylactide production. Industrial Biotechnology 6(4):212–224
CrossRef
Google Scholar
Vink E.T.H., Davies S. (2015) Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo Polylactide Production. Industrial Biotechnology 11(3):167–180
CrossRef
Google Scholar
WBCSD (2014) – Life Cycle Metrics for Chemical Products- A guideline by the chemical sector to assess and report on the environmental footprint of products, based on life cycle assessment. http://www.wbcsd.org/contentwbc/download/1886/23998
Wiloso E.I., Heijungs R. (2013): Key Issues in Conducting Life Cycle Assessment of Bio-Based Renewable Energy Sources. In: Singh A., Pant D., Olsen S.I. (Hg.): Life Cycle Assessment of Renewable Energy Sources. Springer London, London, S. 13–36
CrossRef
Google Scholar
Yates M.R., Barlow C.Y. (2013) Life cycle assessments of biodegradable, commercial biopolymers – A critical review. Resources, Conservation and Recycling 78(2013):54–66
CrossRef
Google Scholar
Yokosuka A., Baitz M., Deimling S., Iriyama K. (2004) Is it reasonable to produce biodegradable plastic for a higher environmental friendliness during end of life? Transactions of the Materials Research Society of Japan 29(5):1875-1878
Google Scholar
Yu J., Chen L.X.L. (2008) The greenhouse gas emissions and fossil energy requirement of bioplastic from cradle to gate of biomass refinery. Environmental Science & Technology 42(18):6961-6966
CrossRef
Google Scholar
Ziem S., Chudziak C., Taylor R., Bauen A., Murphy R.J., Guo M., Akhurst M. (2013) Environmental assessment of Braskem’s biobased PE resin. Study
Google Scholar