Skip to main content

Ökologische Nachhaltigkeitsbewertung von Biokunststoffen

  • 4369 Accesses

Zusammenfassung

Ziel des Kapitels „Ökologische Nachhaltigkeitsbewertung von Biokunststoffen“ ist es, einen literaturbasierten Überblick über den aktuellen Status quo von Biokunststoffen hinsichtlich ihrer ökologischen Auswirkungen zu geben. Vor dem Hintergrund begrenzter fossiler Ressourcen und des Klimawandels können Biokunststoffe eine potenzielle Alternative zu konventionellen Kunststoffen darstellen. Vorteile in der ökologischen Bewertung oder auch einzelnen Umweltkategorien müssen jedoch für die unterschiedlichen Biokunststoffe durch robuste Methoden quantifiziert und nachgewiesen werden. Hierzu werden vorhandene Methoden zur ökologischen Bewertung von Biokunststoffen und Veröffentlichungen mit entsprechenden Kennwerten analysiert. Im Rahmen einer Metaanalyse werden die Kennwerte ausgewertet und diskutiert. Hiermit ergibt sich ein wichtiger Gesamtüberblick zu den ökologischen Auswirkungen von Biokunststoffen. Die Analyse der Methoden zeigt auf, dass methodische Fehlstellen und Lücken einen direkten Vergleich von konventionellen Kunststoffen und Biokunststoffen erschweren. Die Analyse der vorhandenen Kennwerte zeigt auf, dass sich teilweise für die Biokunststoffe hohe Abweichungen in den einzelnen Wirkungskategorien zeigen. Der direkte Vergleich zu konventionellen Kunststoffen zeigt mit den derzeit eingesetzten Methoden und Daten Vor- und Nachteile in den unterschiedlichen Umweltwirkungskategorien.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-658-27795-6_4
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-658-27795-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Abb. 4.1

(Angepasst nach Becker et al. 2018)

Abb. 4.2
Abb. 4.3
Abb. 4.4
Abb. 4.5
Abb. 4.6
Abb. 4.7
Abb. 4.8
Abb. 4.9
Abb. 4.10
Abb. 4.11
Abb. 4.12

Literatur

  • ACDV - Association Chimie du Végétal (2014): Practical recommendations for the environmental assessment of bio-based chemical products. http://www.chimieduvegetal.com/wpcontent/uploads/2016/03/T-FichesSynth-A4Ang-DEF-BD.pdf (Abgerufen am 19.10.2017)

  • Ahlgren S., Björklund A., Ekman A., Karlsson H., Berlin J., Börjesson P., Ekvall T., Finnveden G., Janssen M., Strid I. (2013) LCA of Biorefineries – Identification of key issues and methodological recommendations. Report No 2013:25, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden

    Google Scholar 

  • Ahlgren S., Berlin J., Ekman A., Björklund A., Karlsson H., Börjesson P., Strid I. (2015) Review of methodological choices in LCA of biorefinery systems – key issues and recommendations. Biofuels, Bioproducts and Biorefining 9(5):606–19

    CrossRef  Google Scholar 

  • Akiyama M., Tsuge T., Doi Y. (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polymer Degradation and Stability 80(1):183–194

    CrossRef  Google Scholar 

  • Akanuma Y., Selke S.E.M., Auras R. (2014) A preliminary LCA case study: comparison of different pathways to produce purified terephthalic acid suitable for synthesis of 100 % bio- based PET. International Journal of Life Cycle Assessment 19(6):1238-1246

    CrossRef  Google Scholar 

  • Alvarenga R.A.F., Dewulf J., De Meester S., Wathelet A., Villers J., Thommeret R., Hruska Z. (2013) Life cycle assessment of bioethanol-based PVC. Part 1. Biofuels, Bioproducts & Biorefining 7(4):396–405

    Google Scholar 

  • Beck T., Albrecht S., Lindner J.P., Bos U., Knüpffer E. (2017) Handlungsempfehlungen für Ökobilanzen biobasierter Produkte. Abteilung Ganzheitliche Bilanzierung GaBi, Institut für Akustik und Bauphysik (IABP) Universität Stuttgart

    Google Scholar 

  • Becker N., Mudersbach M., Spierling S., Krieg H., Albrecht S., Endres H.-J. (2018): Handlungsempfehlungen zur Ökobilanzierung von biobasierten Kunststoffen, BiNa, Förderkennzeichen FKZ 01UT1430A

    Google Scholar 

  • Bier J., Verbeek J., Lay M. (2011) Life cycle assessments of bioplastics: Applications and issues. International Journal of Environmental, Cultural, Economic and Social Sustainability 7:145–157

    Google Scholar 

  • Bohlmann G. M. (2004) Biodegradable Packaging Life-Cycle Assessment. Environmental Progress & Sustainable Energy 23(4):342–346

    Google Scholar 

  • Boustead I. (2005) Eco-profiles of the European Plastics Industry. Plastics Europe

    Google Scholar 

  • Chen G.Q., Patel M.K. (2012) Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chemical Reviews 112(4):2082-2099

    CrossRef  Google Scholar 

  • Cheroennet N., Pongpinyopa, S., Leejarkpai T., Suwanmanee U. (2016) A trade-off between carbon and water impacts in bio-based box production chains in Thailand: A case study of PS, PLAS, PLAS/starch, and PBS. Journal of Cleaner Production 167:987-1001

    CrossRef  Google Scholar 

  • Cherubini F., Strømman A. (2011) Life Cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology 102:437–451

    CrossRef  Google Scholar 

  • Choi B., Yoo S., Park S. (2018) Carbon Footprint of Packaging Films Made from LDPE, PLA, and PLA/PBAT Blends in South Korea. Sustainability 10(7):2369

    CrossRef  Google Scholar 

  • Cristobal J., Matos C.T., Aurambout J-P., Manfredi S., Kavalov B. (2016) Environmental sustainability assessment of bioeconomy value chains. Biomass and Bioenergy 89:159–171

    CrossRef  Google Scholar 

  • Devaux J.F., Le G., Pees B. Application of Eco-profile methodology to Polyamide 11. Arkema Report. https://www.extremematerials-arkema.com/export/sites/technicalpolymers/.content/medias/downloads/article-reprints/rilsan-article-reprints/RilsanFamily_eco-profile_article.pdf

  • DIN 16760 (2015): Biobasierte Produkte – Ökobilanzen; Deutsche Fassung, EN 16760:2015

    Google Scholar 

  • Eco-Profiles (2011): PlasticsEurope: Life Cycle Inventory (LCI) Methodology and Product Category Rules (PCR) for Uncompounded Polymer Resins and Reactive Polymer Pre-cursors. Version 2.0 (April 2011)

    Google Scholar 

  • Essel R., Carus M. (2012) Meta-Analyse von Ökobilanzen für bio-basierte Polymere in der Produktion von Proganic®. Nova-Institut GmbH

    Google Scholar 

  • European Committee for Standardization (2019) – CEN/TC 411 – Bio-based Products https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:874780&cs=112703B035FC937E906D8EFA5DA87FAB8

  • Evonik Industries AG (2013) Life Cycle Assessment of biobased polyamides VESTAMID Terra. Evonik

    Google Scholar 

  • Franklin Associates (2011) Cradle to gate life cycle inventory of nine plastic resins and four polyurethane precursors. Franklin Associates, Prairie Village, Kansas

    Google Scholar 

  • Gerngross T. U. & Slater S. C. (2000) How green are green plastics?. Industrial Biotechnology 6(4):212–224

    Google Scholar 

  • Gonzalez M.N.G., Levi M.,Turri S. (2017) Development of polyester binders for the production of sustainable polyurethane coatings: Technological characterization and life cycle assessment. Journal of Cleaner Production 164:171–178

    CrossRef  Google Scholar 

  • Grabowski A., Selke S., Aura, R., Patel K., Martin Ramani N. (2015) Life cycle inventory data quality issues for bioplastics feedstocks. The International Journal of Life Cycle Assessment 20:584–596

    CrossRef  Google Scholar 

  • Groot W.J., Borén T. (2010) Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. International Journal of Life Cycle Assessment 15(9):970–984

    CrossRef  Google Scholar 

  • Harding K.G., Dennis J.S., von Blottnitz H., Harrison S.T.L. (2007) Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology 130(1):57–66

    CrossRef  Google Scholar 

  • Heimersson S., Morgan-Sagastume F., Peters G.M., Werker A., Svanström M. (2014) Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnology 31(4):383–94

    CrossRef  Google Scholar 

  • Hohenschuh W.; Kumar D.; Murthy G.S. (2014) Economic and cradle-to-gate life cycle assessment of poly-3-hydroxybutyrate production from plastic producing, genetically modified hybrid poplar leaves. Journal of renewable and sustainable energy 063113(2014)

    Google Scholar 

  • Horne R., Grant T. (2009) Life cycle assessment and agriculture: challenges and prospects in Horne, R., Grant, T., Verghese, K. (ed.) Life Cycle Assessment: Principles, Practice and Prospects. CSIRO Publishing, Melbourne, Australia, S. 107–124

    Google Scholar 

  • Hottle T.A., Bilec M.M., Landis A.E. (2013) Sustainability assessments of bio-based polymers. Polymer Degradation and Stability 98:1898-1907

    CrossRef  Google Scholar 

  • IfBB, Abschlussbericht zum Projekt „Identifizierung und praktische Umsetzung von Synergien im Bereich der Biopolymere, Biopolymerfasern und Verbundwerkstoffe inklusive Optimierung zugehöriger Prozesstechnik und Verarbeitung zur anwendungsorientierten Weiterentwicklung“, 2017, FKZ: 22024711 (11NR247), link: https://www.fnr-server.de/ftp/pdf/berichte/22024711.pdf

  • ILCD (2010) European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. First edition March 2010. EUR 24708 EN. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • ISO 14020:2000-09: International Organization for Standardization – Umweltkennzeichnungen und -deklarationen – Allgemeine Grundsätze

    Google Scholar 

  • ISO 14025:2006-07: International Organization for Standardization – Umweltkennzeichnungen und -deklarationen – Typ III Umweltdeklarationen – Grundsätze und Verfahren

    Google Scholar 

  • ISO 14040:2006: International Organization for Standardization, Environmental Management – Life Cycle Assessment – Principles and Framework (ISO 14040:2006). European Committee for Standardization, Brussels, Belgium (2006)

    Google Scholar 

  • ISO 14044:2006: International Organization for Standardization, Environmental Management – Life Cycle Assessment – Requirements and Guidelines (ISO 14044:2006). European Committee for Standardization, Brussels, Belgium (2006)

    Google Scholar 

  • ISO 14067 (2014): DIN ISO 14067. Treibhausgase – Carbon Footprint von Produkten – Anforderungen an und Leitlinien für quantitative Bestimmung und Kommunikation. Deutsche und Englische Fassung CEN ISO/TS 14067:2014

    Google Scholar 

  • Jørgensen S. V., Nielsen P. H., Kløverpris J. H., Hauschild M. Z. (2014) Environmental assessment of biomass based materials: With special focus on the climate effect of temporary carbon storage. Department of Management Engineering, Technical University of Denmark

    Google Scholar 

  • Karvinen H. (2015) Life Cycle Assessment and Technical Performance of Recycled and Bio-based Plastics. Aalto University, Master Thesis

    Google Scholar 

  • Kendall A. (2012) A life cycle assessment of biopolymer production from mateial recovery facility residuals. Resources, Conservation and Recycling 61:69–74

    CrossRef  Google Scholar 

  • Kim S., Dale B. E. (2005) Life Cycle Assessment Study of Biopolymers (Polyhydrxyalkanoates) Derived from No-Tilled Corn. International Journal of Life Cycle Assessment 10(3):200–210

    CrossRef  Google Scholar 

  • Kim S., Dale B.E. (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: A Life Cycle Perspective. Environmental Science & Technology 42(20):7690-7695

    CrossRef  Google Scholar 

  • Kuczenski B, Geyer R. (2011) Life Cycle Assessment of Polyethylene Terephthalate (PET) Beverage Bottles Consumed in the State of California. California Department of Resources Recycling and Recovery

    Google Scholar 

  • Kurdikar D., Fournet L., Slater S.C., Paster M., Gruys K.J., Gerngross T.U., Coulon R. (2000) Greenhouse Gas Profile of a Plastic Material Derived from a Genetically Modified Plant. Journal of Industrial Ecology 4(3):107–122

    CrossRef  Google Scholar 

  • La Rosa A.D. (2016) Life Cycle Assessment of biopolymers. Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials

    Google Scholar 

  • Lehtinen H., Saarentaus A., Rouhiainen J., Pitts M., Azapagic A. (2011) A Review of LCA Methods and Tools and their Suitability for SMEs. Biochem Project

    Google Scholar 

  • Liptow C., Carus M., Lozanovski A., Lindner J.-P., Essel R., Albrecht S., Held M. (2017): Handlungsempfehlungen für die Durchführung und Umsetzung von Ökobilanzen für die stoffliche Nutzung von Biomasse im Spannungsfeld der Politik (ÖkoStoff) – Schwerpunkt Wirkungskategorie Klimawandel

    Google Scholar 

  • Manfredi S., Allacker K., Chomkhamsri K., Pelltier N., de Souza D.M. (2012) Product Environmental Footprint (PEF) Guide Ref. Ares(2012)873782

    Google Scholar 

  • McKone T.E., Nazaroff W.W., Berck P., Auffhammer M., Lipman T., Torn M.S., Masanet E., Lobscheid A., Santero N., Mishra U., Barrett A., Bomberg M., Fingerman K., Scown C., Strogen B., Horvath A. (2011) Grand Challenges for Life-Cycle Assessment of Biofuels. Environmental science & technology 45:1751-6

    CrossRef  Google Scholar 

  • McManus M.C., Taylor C.M., Mohr A., Whittaker C., Scown C., Borrion A., Glithero N., Yin Y. (2015) Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels. International Journal of Life Cycle Assessment 20(10):1399-1414

    CrossRef  Google Scholar 

  • Milá I Canals L. M., Azapagic A., Doka G., Jefferies D., King H., Mutel C., Nemecek T., Roches A., Sim S., Stichnothe H., Thoma G., Williams A. (2011) Approaches for Addressing Life Cycle Assessment Data Gaps for Bio-based Products. Journal of Industrial Ecology 15:707–725

    CrossRef  Google Scholar 

  • Muench S., Guenther E. (2013) A systematic review of bioenergy life cycle assessments. Applied Energy 112:257–273

    CrossRef  Google Scholar 

  • Nikolic S., Kiss F., Valentina M., Bukurov M., Stankovic J. (2015) Corn-based polylactide vs. PET bottles – Cradle-to-gate LCA and implications. Materiale Plastice 52(4):517–521

    Google Scholar 

  • Novamont S. p. A. (2012) Environmental Product Declaration – Mater-Bi CF05S. EPD

    Google Scholar 

  • Papong S., Malakul P., Trungkavashirakun R., Wenunun P., Chom-in T., Nithitanakul M., Sarobol E. (2014) Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. Journal of Cleaner Production 65:539–550

    CrossRef  Google Scholar 

  • PAS2050:2008 (2011): British Standards, Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. PAS 2050:2008. Publicly Available Specification. BS, London (2011)

    Google Scholar 

  • Patel M., Crank M., Dornburg V., Hermann B., Roes L., Hüsing B., Overbeek L., Terragni F., Recchia E. (2006) Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources – The Potential of White Biotechnology. Utrecht University. Final Report

    Google Scholar 

  • Pawelzik P., Carus M., Hotchkiss J., Narayan R., Selke S., Wellisch M., Weiss M., Wicke B., Patel M.K (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations. Resources, Conservation and Recycling 73:211–228

    CrossRef  Google Scholar 

  • PEF (2013) EC JRC: Empfehlung der Kommission vom 9. April 2013 für die Anwendung gemeinsamer Methoden zur Messung und Offenlegung der Umweltleistung von Produkten und Organisationen. Amtsblatt der EU, 2013/179/EU (2013)

    Google Scholar 

  • PEFCR v6.1 (2017) European Commission: PEFCR Guidance document, – Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.1, 2017.

    Google Scholar 

  • Petchprayul S., Pomthong M., Nithitanakul M., Papong S., Wenunun P., Likitsupin W., Chom-in T., Trungkavashirakun R., Sarobol E. (2012) Life Cycle Management of Bioplastics for a Sustainable Future in Thailand: Samed Island Model. Chemical Engineering Transactions 29: 265–270

    Google Scholar 

  • Plastics Europe (2014) Eco-profiles and Environmental Product Declarations of the European Plastics Manufacturers

    Google Scholar 

  • Posen D., Jaramillo P., Landis A.E., Griffin M.W. (2017) Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environment Research Letters 12(3):034024

    CrossRef  Google Scholar 

  • Putri R.E. (2018) The water and land footprint of bioplastics. University of Twente. Master Thesis

    Google Scholar 

  • Rostkowski K.H., Criddle C.S., Lepech M.D. (2012) Cradle-to-Gate Life Cycle Assessment for a Cradle-to-Cradle Cycle: Biogas-to-Bioplastic (and Back). Environmental Science & Technology 46:9822–9829

    Google Scholar 

  • Sakai K., Taniguchi M., Miura S., Ohara H., Matsumoto T., Shirai Y. (2004) Making Plastics from Garbage: A Novel Process for Poly-L-Lactate Production from Municipal Food Waste. Journal of Industrial Ecology 7(3–4):63–74

    Google Scholar 

  • Saraiva A. (2017) System boundary setting in life cycle assessment of biorefineries. A review. International Journal of Environmental Science and Technology 14(2):435–452

    Google Scholar 

  • Sauer B. (2012): Life Cycle Inventory Modeling in Practice. In: Life Cycle Assessment Handbook-A Guide for environmentally sustainable products. Mary Ann Curran (Editor), Wiley, USA, 2012. P.43-65 Semba T., Sakai Y., Sakanishi T., Inaba A. (2018): Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate, Journal of Cleaner Production 195. https://doi.org/10.1016/j.jclepro.2018.05.069

    CrossRef  Google Scholar 

  • Semba T., Sakai Y., Skanishi T., Inaba A. (2018): Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate. Journal of Cleaner Production: 195. https://doi.org/10.1016/j.jclepro.2018.05.069

    CrossRef  Google Scholar 

  • Shen L., Worrell E., Patel M.K. (2012) Comparing life cycle energy and GHG emissions of bio- based PET, recycled PET, PLA and man- made cellulose. Biofuels, Bioproducts & Biorefining 6(6):625–639

    CrossRef  Google Scholar 

  • Singh A., Pant D., Korres N., Nizami A.S., Prasad S., Murphy J. (2009). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource technology 101:5003-12

    CrossRef  Google Scholar 

  • Spierling S., Knüpffer E., Behnsen H., Mudersbach M., Krieg H., Springer S., Albrecht S., Herrmann C., Endres H.-J. (2018): Bio-based plastics – A review of environmental, social and economic impact assessments. Journal of Cleaner Production (2018), https://doi.org/10.1016/j.jclepro.2018.03.014

    CrossRef  Google Scholar 

  • Taengwathananukool S., Chidthaisong A., Gheewala S.H., Chiarakorn S., Theinsathid P. (2013) Environmental Impact Assessment of Bioplastic and Melamine-based Coffee Cup Production. Journal of Sustainable Energy & Environment 4(3):103–111

    Google Scholar 

  • Tecchio P., Freni P., De Benedetti B., Fenouillot F. (2016) Ex-ante life cycle assessment approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production 112(1):316–325

    CrossRef  Google Scholar 

  • Tsiropoulos I., Faaij A.P.C., Lundquist L., Schenker U., Briois J. F., Patel M.K. (2015) Life cycle impact assessment of bio- based plastics from sugarcane ethanol. Journal of Cleaner Production, 90:114–127

    CrossRef  Google Scholar 

  • UN CPC 347 (2015) The International EPD® System: PRODUCT GROUP CLASSIFICATION: UN CPC 347 PLASTICS IN PRIMARY FORMS. Version 2.11 (2015). GPI (2015): General Programme Instructions for the International EPD System – Version 2.5

    Google Scholar 

  • Vidal R., Martinez P., Mulet E., Gonzalez R., Lopez-Mesa B., Fowler P., Fang J.M. (2007) Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. Journal of Polymers and the Environment 15:159–168

    CrossRef  Google Scholar 

  • Vink E.T.H., Rábago K.R., Glassner D.A., Gruber P.R. (2003) Applications of life cycle assessment to NatureWorks polylactide (PLA) production. Polymer Degradation and Stability 80(3):403–419

    CrossRef  Google Scholar 

  • Vink E.T.H., Glassner D.A., Kolstad J.J., Wooley R.J., O’Connor R.P. (2007) The eco-profile for current and near-future NatureWorks polylactide (PLA) production. Industrial Biotechnology 3(1):58–81

    CrossRef  Google Scholar 

  • Vink E.T.H., Davies S., Kolstad J.J. (2010) The eco- profile for current Ingeo polylactide production. Industrial Biotechnology 6(4):212–224

    CrossRef  Google Scholar 

  • Vink E.T.H., Davies S. (2015) Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo Polylactide Production. Industrial Biotechnology 11(3):167–180

    CrossRef  Google Scholar 

  • WBCSD (2014) – Life Cycle Metrics for Chemical Products- A guideline by the chemical sector to assess and report on the environmental footprint of products, based on life cycle assessment. http://www.wbcsd.org/contentwbc/download/1886/23998

  • Wiloso E.I., Heijungs R. (2013): Key Issues in Conducting Life Cycle Assessment of Bio-Based Renewable Energy Sources. In: Singh A., Pant D., Olsen S.I. (Hg.): Life Cycle Assessment of Renewable Energy Sources. Springer London, London, S. 13–36

    CrossRef  Google Scholar 

  • Yates M.R., Barlow C.Y. (2013) Life cycle assessments of biodegradable, commercial biopolymers – A critical review. Resources, Conservation and Recycling 78(2013):54–66

    CrossRef  Google Scholar 

  • Yokosuka A., Baitz M., Deimling S., Iriyama K. (2004) Is it reasonable to produce biodegradable plastic for a higher environmental friendliness during end of life? Transactions of the Materials Research Society of Japan 29(5):1875-1878

    Google Scholar 

  • Yu J., Chen L.X.L. (2008) The greenhouse gas emissions and fossil energy requirement of bioplastic from cradle to gate of biomass refinery. Environmental Science & Technology 42(18):6961-6966

    CrossRef  Google Scholar 

  • Ziem S., Chudziak C., Taylor R., Bauen A., Murphy R.J., Guo M., Akhurst M. (2013) Environmental assessment of Braskem’s biobased PE resin. Study

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateshwaran Venkatachalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Venkatachalam, V., Becker, N., Spierling, S., Mudersbach, M. (2020). Ökologische Nachhaltigkeitsbewertung von Biokunststoffen. In: Endres, HJ., Mudersbach, M., Behnsen, H., Spierling, S. (eds) Biokunststoffe unter dem Blickwinkel der Nachhaltigkeit und Kommunikation. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-27795-6_4

Download citation