Skip to main content

Using supervised learning to predict the reliability of a welding process

  • Conference paper
  • First Online:

Abstract

Abstract—In this paper, supervised learning is used to predict the reliability of manufacturing processes in industrial settings. As an example case, lifetime data has been collected from a special device made of sheet metal. It is known, that a welding procedure is the critical step during production. To test the quality of the welded area, End-of-Life tests have been performed on each of the devices.

For the statistical analysis, not only the acquired lifetime, but also data specifying the device before and after the welding process as well as measured curves from the welding step itself, e.g., current over time, are available.

Typically, the Weibull and log-normal distributions are used to model lifetime. Also in our case, both are considered as an appropriate candidate distribution. Although both distributions might fit the data well, the log-normal distribution is selected because the ks-test and the Bayesian Factor indicate slightly better results.

To model the lifetime depending on the welding parameters, a multivariable linear regression model is used. To find the significant covariates, a mix of forward selection and backward elimination is utilized. The t-test is used to determine each covariate’s importance while the adjusted coefficient of determination is used as a global Goodness-of-Fit criterion. After the model that provides the best fit has been determined, predictive power is evaluated with a non-exhaustive cross-validation and sum of squared errors.

The results show that the lifetime can be predicted based on the welding settings. For lifetime prediction, the model yields accurate results when interpolation is used. However, an extrapolation beyond the range of available data shows the limits of a purely data-driven model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Zumtobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zumtobel, M., Plankensteiner, K. (2019). Using supervised learning to predict the reliability of a welding process. In: Haber, P., Lampoltshammer, T., Mayr, M. (eds) Data Science – Analytics and Applications. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-27495-5_15

Download citation

Publish with us

Policies and ethics