Advertisement

AI – Challenges in application with bus data in the automotive sector

  • Alexander Faul
  • Maria Floruß
  • Felix Pistorius
Conference paper
  • 1.3k Downloads
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Artificial Intelligence (AI) is a scientific field which emerged in the 1950s shortly after the introduction of the first electronic and programable computers. Since then, the field has hit many astonishing milestones, like defeating the then world chess champion Garry Kasparow in 1997 (Deep Blue, IBM) or surpassing human abilities in areas like visual object recognition in images (ISBI [1], ICPR [2]). Today it is used widely in many different areas of our daily lives, from autonomous cars and drones to medical expert systems to recommender systems in online shops.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1] D. Ciresan, A. Giusti, L. Gambardella and J. Schmidhuber, “Deep Neural Networks in electron Microscopy Images,” Advances in Neural Information Processing Systems (NIPS 2012), 2012.Google Scholar
  2. [2] D. Ciresan, A. Giusti, L. Gambardella and J. Schmidhuber, “Mitosis Detection in Breasst Cancer Histology Images using Deep Neural Networks,” MICCAI, 2013.Google Scholar
  3. [3] M. Ester and J. Sander, Knowledge Discovery in Databases – Techniken und Anwendungen, Berlin, Heidelberg: Springer, 2000.CrossRefGoogle Scholar
  4. [4] C. Shearer, “The CRISP-DM Model: The New Blueprint for Data Mining,” Journal of Data Warehousing, vol. 5, no. 4, 2000.Google Scholar
  5. [5] R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology, New York: The Viking Press, 2005.Google Scholar
  6. [6] N. J. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and Achievements, New York: Cambridge Univerity Press, 2009.Google Scholar
  7. [7] J. D. Kelleher and B. Tierney, Data Science, The MIT Press, 2018.Google Scholar
  8. [8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.CrossRefGoogle Scholar
  9. [9] K. Cho, B. van Merrienboer, C. Gülcehre, F. Bougares, H. Schwenk and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical,” CoRR, vol. abs/1406.1078, 2014.Google Scholar
  10. [10] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series,” KDD workshop, vol. 10, no. 16, 1994.Google Scholar
  11. [11] J. Ma and J. Perkins, “Time-series novelty detection using one-class support vector machines,” in Proceedings of the International Joint conference on Neural Networks, 2003.Google Scholar
  12. [12] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.Google Scholar
  13. [13] A. Mueller, “Peekaboo – Machine Learning Cheat Sheet (for scikit-learn),” 25 01 2013. [Online]. Available: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html. [Accessed 15 01 2019].
  14. [14] ericlicding, olprod, iamqinmu and OpenLocalizationService, “Cheat Sheet mit Machine Learning-Algorithmen für Azure Machine Learning Studio,” [Online]. Available: https://docs.microsoft.com/de-de/azure/machine-learning/studio/algorithm-cheat-sheet. [Accessed 15 01 2019].
  15. [15] L. Wilkinson, A. Anand and R. Grossman, “High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 1363-1372, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Alexander Faul
    • 1
  • Maria Floruß
    • 1
  • Felix Pistorius
    • 2
  1. 1.Vector Informatik GmbHStuttgartDeutschland
  2. 2.Karlsruher Institut für TechnologieKarlsruheDeutschland

Personalised recommendations