Skip to main content

Development of electric drive concepts for fuel cell vehicles for Germany and China

  • Conference paper
  • First Online:
19. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Regarding the electrification of powertrain in the recent years, different ways seem to be possible. The diversity of drive systems and their topologies are increasing permanently. Even the differences between various markets are remarkable and influence the way of developing technical solutions as well as the mix of technologies in market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • 1. Dehn, S., Goltz, B.; Sang, J.; Mohrdieck, C. (2017): Daimler’s Next Generation Fuel Cell Engine. EVS30 Symposium. Stuttgart. 09.-11.10.2017

    Google Scholar 

  • 2. Oldenbroek, V.; Alva, S; Pyman B.; Buning, L.B.; Veenhuizen, P.A.; van Wijk, A.J.M. (2017): Hyundai ix35 fuel cell electric vehicles: degradation analysis for driving and vehicle-to-grid usage EVS30 Symposium. Stuttgart. 09.-11.10.2017

    Google Scholar 

  • 3. Fischer, T.; Götz, F.; Berg, L. F.; Kollmeier, H.-P.; Gauterin, F. (2015): Modelbased Development of a Holistic Thermal Management System for an Electric Car with a High Temperature Fuel Cell Range Extender. 11th International Modelica Conference, Paris. 21.-23. September 2015.

    Google Scholar 

  • 4. Kraftfahrtbundesamt – Fahrzeugzulassungen (FZ8 2018, FZ14 2009-2017)

    Google Scholar 

  • 5. ADAC Pkw-Monitor 2017/II, ADAC Verlag

    Google Scholar 

  • 6. Case No COMP/M.1406 – Hyundai/Kia (1999), Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • 7. https://h2.live/ [Retrieved 2019-01-20]

  • 8. Statista Konsumentenbefragung – Tabellenband “KFZ 2018”

    Google Scholar 

  • 9. Center of Automotive Management (2016)

    Google Scholar 

  • 10. Zentrum für empirische Kommunikationsforschung der DHBW Ravensburg (2017): Weiter dieselig. Horizont 43/2017 p. 20

    Google Scholar 

  • 11. China-hydrogen.org, Column of hydrogen stations, Available: http://www.chinahydrogen.org/hydrogen/ [Retrieved 2018-04-02]

  • 12. China-hydrogen.org, Status Analysis of Chinese hydrogen energy market and regional development, Available: http://www.china-hydrogen.org/observation/2018-04-01/7591.html [Retrieved 2018-04-02]

  • 13. Chuneng.BJX; Status of Chinese hydrogen tank station construction; Available: http://shupeidian.bjx.com.cn/news/20180402/889335.shtml [Retrieved 2018-06-05]

  • 14. Xiao, Q.; Niu, W.; Stephan, A.; An, C.; Song, K.; Behrendt, M.; Bause, K.; Albers, A.; Zhang, T. (2018): Demand analysis for fuel cell vehicle validation standards in China and Germany, CTI 2018, Shanghai.

    Google Scholar 

  • 15. Society of Automotive Engineers of China. Hydrogen Fuel Cell Vehicle Technology Roadmap. October 2016.

    Google Scholar 

  • 16. ChinaBus.info, Hydrogen energy develop policy and status in 7 Chinese provinces and cities. Available: http://www.chinabus.info/news/2018/0330/65833.shtml [Retrieved 2018-06-11]

  • 17. Ministry of Industry and Information Technology of the People’s Republic of China, Document release, Available: http://xxgk.miit.gov.cn/gdnps/wjfbindex.jsp [Retrieved 2018-10]

  • 18. Ofweek, Analysis of development and tendency of fuel cell vehicle market in 2017, Available: http://nev.ofweek.com/2018-02/ART-71001-8420-30199109.html [Retrieved 2018-08]

  • 19. Behrendt, Matthias, Innovation Processes and E-mobility. 4th Sino-German Innovation Conference, 13.-14. April 2016, Berlin.

    Google Scholar 

  • 20. A. Du, X. Bu, L. Chen, Z. Yu, Investigation on Bus Driving Cycles in Shanghai, Journal of Tongji University (Natural Science) Jul.2006

    Google Scholar 

  • 21. Kasper, R./Schünemann, M. (2012): Elektrische Fahrantriebe – Topologien und Wirkungsgrad, in: MTZ Wissen, Nr. 10/2012, p. 802–807.

    Google Scholar 

  • 22. Gao, Y.; Ehsani, M. (2001): Design of Fuel Cell Powered Hybrid Vehicle Drive Train, SAE Technical Paper Series 2001-01-2532

    Google Scholar 

  • 23. Kim, M.-J.; Peng, H. (2007): Power management and design optimization of fuel cell/battery hybrid vehicles, Journal of Power Sources 165 (2007), p. 819-832

    Article  Google Scholar 

  • 24. Jain, M.; Desai, C.; Kharma, N.; Williamson, S. (2009): Optimal Powertrain Component Sizing of a Fuel Cell Plug-In Hybrid Electric Vehicle Using Multi-Objective Genetic Algorithm

    Google Scholar 

  • 25. Hegazy, O.; Van Mierlo, J. (2010): Particle Swarm Optimization for Optimal Powertrain Component Sizing and Design of Fuel Cell Hybrid Electric Vehicle, 12th International Conference on Optimization of Electrical and Electronical Equipment 2010

    Google Scholar 

  • 26. Xu, L.; Ouyang, M.; Li, J.; Yang, F.; Lu, L.; Hua, J. (2013): Optimal sizing of lugin fuel cell electric vehicles using models of vehicle performance and system cost, Applied Energy 103 (2013) p. 477-487

    Article  Google Scholar 

  • 27. Johannaber, M. (2010): Auslegung und Energiemanagement von hybriden Brennstoffzellenfahrzeugen, Schriftenreihe Automobiltechnik, Intitut für Kraftfahrzeuge, RWTH Aachen

    Google Scholar 

  • 28. Sarioglu, I. (2014): Conceptual Design of Fuel-Cell Vehicle Powertrains, Schriftenreihe des Instituts für Fahrzeugtechnik TU Braunschweig, Band 36, Shaker Verlag

    Google Scholar 

  • 29. Weiß, F. (2017): Optimale Konzeptauslegung elektrifizierter Fahrzeugantriebsstränge, AutoUni-Schriftenreihe, Band 122

    Google Scholar 

  • 30. Odeim, F. (2018): Optimization of Fuel Cell Hybrid Vehicles

    Google Scholar 

  • 31. Albers, A., Heimicke, J., Hirschter, T., Richter, T., Reiß, N., Maier, A., et al. (2018). Managing Systems of Objectives in the agile Development of Mechatronic Systems by ASD – Agile Systems Design. In Proceedings of NordDesign 2018. 172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Bause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bause, K., Braumandl, A., Stephan, A., Xiao, Q., Behrendt, M. (2019). Development of electric drive concepts for fuel cell vehicles for Germany and China. In: Bargende, M., Reuss, HC., Wagner, A., Wiedemann, J. (eds) 19. Internationales Stuttgarter Symposium . Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25939-6_76

Download citation

Publish with us

Policies and ethics