Skip to main content

Evaluation of the effects of trends on vehicle concepts based on a forecast of travel demand

  • Conference paper
  • First Online:
19. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Today, vehicle concepts are developed on the basis of technical design premises derived from attributes such as e.g. the electrical range in the case of electrified vehicles. For the respective positioning of the concept, the customer requirements of the relevant target group determined by market research and the competitive comparison are decisive. Technological trends (e.g. fully automated driving1; FAD) and business model innovations (e.g. on demand mobility; ODM) have the potential to change the mobility behavior of users and thus the characteristics of vehicle concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • 1. Achleitner A, Antony P, Berger E et al (2016) Formen und neue Konzepte. In: Pischinger S, Seiffert U (eds) Vieweg Handbuch Kraftfahrzeugtechnik. Springer Fachmedien Wiesbaden, Wiesbaden, pp 131–251

    Google Scholar 

  • 2. ADAC (2018) ADAC Info - Autodatenbank Markenauswahl. https://www.adac.de/infotestrat/autodatenbank/autokatalog/default.aspx. Accessed 1 October 2018

  • 3. Baumgartner M (2018) Entwicklung von Lösungsansätzen für Innenraumkonzepte in vollautomatisierten zukünftigen Fahrzeugkonzepten. Master’s thesis. Technische Universität München

    Google Scholar 

  • 4. Cornett AP (2002) Plattformkonzepte in der Automobilentwicklung. Zugl.: Koblenz, Wiss. Hochsch. für Unternehmensführung, Diss., 2000. 1st edn. Dt. Univ.-Verl., Wiesbaden

    Google Scholar 

  • 5. Follmer R, Gruschwitz D, Jesske B, Quandt S (2010) Mobilität in Deutschland 2008: Ergebnisbericht: Struktur – Aufkommen – Emissionen – Trends. Bundesministeriums für Verkehr, Bau und Stadtentwicklung

    Google Scholar 

  • 6. Hensher DA, Button KJ (2007) Handbook of Transport Modelling. 2nd edn. Emerald Group Publishing Limited; Turpin Distribution Services Limited [distributor], Bingley, Biggleswade

    Google Scholar 

  • 7. Kampker A, Gerdes J, Schuh G (2017) Die StreetScooter-Mobilitätslösung. In: Kampker A, Gerdes J, Schuh G (eds) Think Big, Start Small: StreetScooter die e-mobile Erfolgsstory: Innovationsprozesse radikal effizienter. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 201–210

    Chapter  Google Scholar 

  • 8. KBA (2014) Korrigierte Endfassung 11. KBA-Bekanntmachung zur Fahrzeugsystematik (SV 1). Kraftfahrt-Bundesamt

    Google Scholar 

  • 9. Kröger L, Kuhnimhof T, Trommer S (2016) Modelling the Impact of Automated Driving. Private AV Scenarios for Germany and the US. Presented to the European Transport Conference. German Aerospace Center, Berlin

    Google Scholar 

  • 10. Kröger L, Kuhnimhof T, Trommer S (2018) Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA. Transportation Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2018.03.033

    Google Scholar 

  • 11. Ortúzar JdD, Willumsen LG (2011) Modelling transport. 4th edn. Wiley, Chichester u.a.

    Book  Google Scholar 

  • 12. Pfriem M (2016) Analyse der Realnutzung von Elektrofahrzeugen in kommerziellen Flotten zur Definition einer bedarfsgerechten Fahrzeugauslegung. Dissertation. Karlsruher Institut für Technologie (KIT)

    Google Scholar 

  • 13. Schneider A (2006) Die strategische Planung des Produktportfolios bei Automobilherstellern: Konzeption eines Instruments zur Bewertung des Cycle-Plans. 1st edn. Nomos, Baden-Baden

    Google Scholar 

  • 14. Tesch F (2010) Bewertung der Strukturvariabilität von Pkw-Karosseriederivaten. Dissertation. Technische Universität München

    Google Scholar 

  • 15. Trommer S, Kolarova V, Fraedrich E, Kröger L, Kickhöfer B, Kuhnimhof T, Lenz B, Phleps P (2016) Autonomous Driving: The Impact of Vehicle Automation on Mobility Behaviour. ifmo - Institute for Mobility Research

    Google Scholar 

  • 16. Ulrich K (1995) The role of product architecture in the manufacturing firm. Research Policy 24:419–440. https://doi.org/10.1016/0048-7333(94)00775-3

    Article  MathSciNet  Google Scholar 

  • 17. VDA (2015) Automation: From Driver Assistance Systems to Automated Driving. Verband der Automobilindustrie e. V. (VDA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peters, P.L., Demuth, R., Schramm, D. (2019). Evaluation of the effects of trends on vehicle concepts based on a forecast of travel demand. In: Bargende, M., Reuss, HC., Wagner, A., Wiedemann, J. (eds) 19. Internationales Stuttgarter Symposium . Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25939-6_46

Download citation

Publish with us

Policies and ethics