Data, Data Everywhere, and Quite a Bit(e) to Learn

Mobile and ubiquitous experimentation and observation by new information and communication technology
  • Luis DarmendrailEmail author
  • Oliver Keller
  • Andreas Müller


Mobile Informations- und Kommunikationsgeräte wie Smartphones und die darin eingebauten Sensoren zeigen in den letzten zehn Jahren eine starke Entwicklung, die neue Möglichkeiten fruchtbarer Wechselwirkung zwischen Technik- und Naturwissenschaftsunterricht mit sich bringt. Vor diesem Hintergrund diskutieren wir bestehende und eigene Forschung und Entwicklung aus drei sich ergänzenden Perspektiven: Allgemeine technologieorientierte Bildungsziele, wissenschaftlich-experimentelle Verwendbarkeit für Bildungsziele und Forschung über affektive und kognitive Effekte. Der Beitrag schließt mit Thesen zu integriertem Unterricht in Naturwissenschaften und Technik, die sich auf technischnaturwissenschaftliche Bildung und den Bedarf an Forschung und Entwicklung beziehen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amini, B. V., & Ayazi, F. (2005). Micro-gravity capacitive silicon-on-insulator accelerometers. Journal of micromechanics and microengineering, 15 (11), 2113.Google Scholar
  2. Baram-Tsabari, A. & Yarden, A. (2008) Girls’ biology, boys’ physics: evidence from free-choice science learning settings. Research in Science & Technological Education 26(1), 75-92.Google Scholar
  3. Beland, L. P., & Murphy, R. (2016). Ill communication: technology, distraction & student performance. Labour Economics, 41, 61-76Google Scholar
  4. Bennett, J. Lubben, F., & Hogarth, S. (2007). Bringing Science to Life: A Synthesis of the Research Evidence on the Effects of Context-Based and STS Approaches to Science Teaching. Science Education, 91 (3), 347-370.Google Scholar
  5. Bezzam, E., Scheibler, R., Azcarreta, J., Pan H., Simeoni M. et al. (2017). Hardware And Software For Reproducible Research In Audio Array Signal Processing. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017. IEEE: New York, p. 6591-6592.Google Scholar
  6. Caron, F., Duflos, E., Pomorski, D., & Vanheeghe, P. (2004). GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects. Information Fusion, 7(2), 221-230.Google Scholar
  7. Clewett, C., & Hy D. Tran (2003). Macro Analog To MEMS: A Program To Teach 8th And 9th Grade Students Science And Engineering. Journal Of STEM Education: Innovations & Research, 4(3), 1.Google Scholar
  8. Cressler, J. D. (2015). Silicon Earth: Introduction to Microelectronics and Nanotechnology. Boca Raton: CRC Press.Google Scholar
  9. Diaz-Jimenez, A. (1993). The standing high jump. The Physics Teacher, 31 (9), 534-535.Google Scholar
  10. Dowling J., & Vamos L. (1993). Identification of kinetic and temporal factors related to vertical jump performance. Journal of Applied Biomechanics, 9 (2), 95-110.Google Scholar
  11. Fensham, P.J. (2009). Real World Contexts in PISA Science. Implications for Context-Based Science Education. Journal of Research in Science Teaching, 8 (46), 884-896.Google Scholar
  12. Fraden, J., (2016). Handbook of Modern Sensors - Physics, Designs, and Applications (5th edition). Berlin: Springer.Google Scholar
  13. Hirth, M., Kuhn, J., Müller, A., Rohs, M., & Klein, P. (2016). iMobilePhysics: Seamless Learning durch Experimente mit Smartphones & Tablets in Physik. Zeitschrift für Hochschulentwicklung 11 (4), 17-37.Google Scholar
  14. Hochberg, K., (2016). iMechanics: Smartphones als Experimentiermittel im Physikunterricht der Sekundarstufe II - Wirkung auf Lernerfolg, Motivation und Neugier in der Mechanik. München: Verlag Dr. Hut.Google Scholar
  15. Hochberg, K., Kuhn, J., & Müller, A. (2016). Science Education with handheld devices: A Comparison of Nintendo WiiMote and iPod touch for kinematics learning. Progress in Science Education/Perspectives in Science, 10, 13-18.Google Scholar
  16. Hochberg, K., Kuhn, J., & Müller, A. (2018). Using Smartphones as Experimental Tools—Effects on Interest, Curiosity, and Learning in Physics Education. Journal of Science Education and Technology 27 (5), 385-403.Google Scholar
  17. Häussler, P., & Hoffmann, L. (1995). Physikunterricht–an den Interessen von Mädchen und Jungen orientiert. Unterrichtswissenschaft, 23 (2), 107-126.Google Scholar
  18. Jammer, M. (1966). The conceptual development of quantum mechanics. New York: McGraw-Hill.Google Scholar
  19. Jee, H. (2017). Review of researches on smartphone applications for physical activity promotion in healthy adults. Journal of exercise rehabilitation, 13 (1), 3-11.Google Scholar
  20. Kampourakis, K. (2017). Making sense of genes. Cambridge: Cambridge University Press.Google Scholar
  21. Kirk, R. E. (2018). Effect Size Measures. Wiley StatsRef: Statistics Reference Online. Hoboken NJ: John Wiley & SonsGoogle Scholar
  22. Klein, P. (2016). Konzeption und Untersuchung videobasierter Aufgaben im Rahmen vorlesungsbegleitender Übungen zur Experimentalphysik (Mechanik). Dissertation, Kaiserslautern: Technische Universität.Google Scholar
  23. Klein, P., Kuhn, J. & Müller, A. (2018). Förderung von Repräsentationskompetenz und Experimentbezug in den vorlesungsbegleitenden Übungen zur Experimentalphysik – Empirische Untersuchung eines videobasierten Aufgabenformates. Zeitschrift für Didaktik der Naturwissenschaften 24, 1-18.Google Scholar
  24. Kuhn, J. (Hrsg.). (2015). Materialien und Methoden: Experimentieren mit Smartphones und Tablets [Themenheft]. Naturwissenschaften im Unterricht – Physik 26 (145).Google Scholar
  25. Kuhn, J., & Vogt, P. (2012). iPhysicsLabs (Series), Column Editors’ Note. The Physics Teacher, 50 (2), 372.Google Scholar
  26. Kuhn, J. & Vogt, P. (2013). Applications and examples of experiments with mobile phones and smartphones in physics lessons. Frontiers in Sensors, 1 (4), 67-73.Google Scholar
  27. Kuhn, J., Vogt, P. & Müller, A. (2014). Analyzing Elevator Oscillation with the Smartphone Acceleration Sensors. The Physics Teacher, 52 (1), 55-56.Google Scholar
  28. Linthorne, N., (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69 (11), 1198-1204.Google Scholar
  29. Lanz Countryman, C. (2014). Familiarizing Students with the Basics of a Smartphone’s Internal Sensors. The Physics Teacher, 52 (9), 557-559.Google Scholar
  30. Matthews, M. R., Gauld, C. F., & Stinner, A. (2005). The Pendulum: Scientific, Historical, Philosophical & Educational Perspectives. Dordrecht, The Netherlands: Springer.Google Scholar
  31. Mikelskis-Seifert, S. & Duit, R. (2007). Physik im Kontext – Innovative Unterrichtsansätze für den Schulalltag. Mathematischer und Naturwissenschaftlicher Unterricht, 5 (60), 265.Google Scholar
  32. Müller, A., Vogt, P., Kuhn, J., & Müller, M. (2015). Cracking knuckles – A smartphone inquiry on bioacoustics. The Physics Teacher, 53 (5), 307-308.Google Scholar
  33. Müller, A., Hirth, M., & Kuhn, J. (2016). Tunnel pressure waves - A smartphone inquiry on rail travel. The Physics Teacher, 54 (2), 118-119.Google Scholar
  34. Offenbacher, P. (1969). Physics and the Vertical Jump. American Journal of Physics, 38 (7), 820-836.Google Scholar
  35. Paulos, J.A. (1995) A Mathematician Reads the Newspaper. Basic Books.Google Scholar
  36. Peterson, C. (2001). How it works: the charged-coupled device, or CCD. Journal of young investigators, 3 (1).Google Scholar
  37. Schroeder, C. M., Scott, T. P., Tolson, H., Huang, T., & Lee, Y. (2007). A meta-analysis of national research: Effects of teaching strategies on student achievement in science in the United States. Journal of Research in Science Teaching, 44 (10), 1436-1460.Google Scholar
  38. Science on Stage (Ed.) (2014). Smartphones in Science Teaching. Science on Stage – The European Platform for Science Teachers;
  39. Shkel, A. M. (2006). Type I and type II micromachined vibratory gyroscopes. Position, Location, And Navigation Symposium, 2006 IEEE/ION, 586-593.Google Scholar
  40. Swarat, S., Ortony, A., & Revelle, W. (2012). Activity matters: Understanding student interest in school science. Journal of Research in Science Teaching, 49 (4), 515-537.Google Scholar
  41. Tossell, C. C., Kortum, P., Shepard, C., Rahmati, A., & Zhong, L. (2015). You can lead a horse to water but you cannot make him learn: Smartphone use in higher education. British Journal of Educational Technology, 46 (4), 713-724.Google Scholar
  42. van Bruggen, J., Kirschner, P., & Jochems, W. (2002). External representation of argument in CSCL and the management of cognitive load. Learning and Instruction, 12 (1), 121-138.Google Scholar
  43. UNESCO (Edt.)(2015). Guidelines for Open Educational Resources (OER) in Higher Education. Paris: UNESCO and Vancouver: Commonwealth of Learning,

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Luis Darmendrail
    • 1
    Email author
  • Oliver Keller
    • 2
  • Andreas Müller
    • 1
  1. 1.Universität GenfGenfSchweiz
  2. 2.CERN & Universität GenfGenfSchweiz

Personalised recommendations