Skip to main content

Gehäuse

  • Chapter
  • First Online:
Schwungradspeicher in der Fahrzeugtechnik
  • 2283 Accesses

Zusammenfassung

Nichts schadet dem wirtschaftlichen Erfolg einer Technologie mehr, als der Ruf, gefährlich zu sein. Auch wenn kaum Unfälle mit Schwungrädern bekannt sind, bei denen es tatsächlich zu einem Personenschaden kam, so genügen Zwischenfälle wie z. B. der vielzitierte Rotorbruch in der Grid-Stability-Anlage von Beacon Power, um das Misstrauen gegenüber der FESS-Technologie zu schüren [1], aber bisher wurden nur wenige Unfälle publik, bei denen das Berstgehäuse durschlagen wurde und Rotorbruchstücke ausgetreten sind. Zwei prominente Beispiele sind jedoch:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [4] wird eine Dichte von 1608 kg/m3 für einen Faserverbundrotor angegeben.

  2. 2.

    Der tatsächliche Preis hängt von einer Vielzahl an Parametern ab, welche von Rotorwerkstoff, über Messtechnik, bis hin zur Vorkonditionierung (Temperieren, Feinwuchten) reichen und kann in einigen Fällen 5000 Euro signifikant übersteigen. Werte basieren auf eigener Erfahrung des Autors.

  3. 3.

    Das Test-Schwungrad mit einem Durchmesser von 140 mm weist eine Oberflächengeschwindigkeit von rund 220 m/s bei 30.000 UpM auf. Die Rotorfragmente werden beim Impakt von dieser Geschwindigkeit innerhalb weniger Millimeter, oder maximal Zentimeter auf Null abgebremst.

Literatur

  1. http://www.Wikinvest.com (2012) Safety failures by the company’s flywheel products or those of its competitors could reduce market demand or acceptance for flywheel services or products in general. http://www.wikinvest.com/stock/Beacon_Power_%28BCON%29/Safety_Failures_Flywheel_Products_Those_Competitors_Reduce_Market. [Zugriff am 14. Mai 2016].

  2. D. A. Flint (2011) Mishap at the Beacon Power Frequency Flywheel Plant.The Eastwick Press. Petersburg, NY, USA. https://eastwickpress.com/news/2011/07/a-mishap-at-the-beacon-power-frequency-flywheel-plant/.

  3. T. Mento und B. Ruth (2015) Injuries Reported in Explosion at Poway Business. KPBS Public Broadcasting, Ausgabe Donnerstag 11. Juni 2015.

    Google Scholar 

  4. A. Buchroithner und G. Jürgens (2017) Schwungradenergiespeicher – Eine Chance für die Automobilindustrie und darüber hinaus. VDI Fortschritt-Berichte 38. Internationales Wiener Motorensymposium, Reihe 12, Nr. 802, Bd. 2, Wien, VDI Verlag, 2017, pp. 432–451.

    Google Scholar 

  5. A. J. Colozza (2000) High Energy Flywheel Containment Evaluation. NASA, Brook Park, Ohio, USA.

    Google Scholar 

  6. R. R. Gilbert, G. E. Heuer, E. H. Jacobsen, E. B. Kuhns, L. J. Lawson und W. T. Wada (1972) Flywheel Drive Systems Study – Final Report. Environmental Protection Agency, USA.

    Google Scholar 

  7. G. Genta (1985) Kinetic Energy Storage: Theroy and Practice of Advanced Flywheel Systems, Butterworths, London.

    Google Scholar 

  8. J. Hansen und D. O’Kain (2011) An Assessment of Flywheel High Power Energy Storage Technology for Hybrid Vehicles. Oak Ridge National Laboratory – Managed by UT-Battelle for the Department of Energy, Oak Ridge, TN 37831, USA.

    Google Scholar 

  9. Jerzy T. Sawicki, Xi Wu, George Y. Baaklini und Andrew L. Gyekenyesi (2003) Vibration-Based Crack Diagnosis in Rotating Shafts During Acceleration Through Resonance Proceedings of the 10th Annual International Symposium on Smart Structures and Materials.

    Google Scholar 

  10. G. Litak und J. T. Sawicki (2009) Interermittent behaviour of a Cracked Rotor in the resonance region. Chaos, Solitons & Fractals. Volume 42, Ausgabe 3, 15 November 2009, pp. 1495–1501.

    Google Scholar 

  11. A. L. Gyekenyesi, J. T. Sawicki, R.E. Martin, W.C. Haase und G. Baaklini (2005) Vibration Based Crack Detection in a Rotating Disk – Part 2-Experimental Results. NASA/Glenn Research Center, USA.

    Google Scholar 

  12. D. Newland (1996) An Introduction to Random Vibrations, Spectral & Wavelet Analysis, 3. Ausgabe 1996.

    Google Scholar 

  13. J. Kim et al (2003) Crack Detection in Operating Rotors using Direct Harmonic Wavelet Transformation. Mechanical Engineering Department, Imperial College of Science, London, UK.

    Google Scholar 

  14. H. Steffan (2010) Skriptum Vehicle Safety II, Graz: VSI – Vehicle Safety Institute, TU Graz, Österreich.

    Google Scholar 

  15. Green Car Congress (2007) Flybrid Flywheel Hybrid System Passes First Crash Test. 2007. http://www.greencarcongress.com/2007/10/flybrid-flywhee.html. [Zugriff am 19. September 2010].

  16. M. Strasik (2003) Flywheel Electricity Systems with Superconducting Bearings for Utility Applications. Boeing Technology/Phantom Works, Seattle, USA.

    Google Scholar 

  17. M. A. Pichot, J. M. Kramer, R. C. Thompson, R. J. Hayes und J. H. Beno (1997) The Flywheel Battery Containment Problem. 1997 SAE International Congress and Exposition, Detroit, Michigan, USA.

    Google Scholar 

  18. M. Strasik und I. Gyuk (2002) Flywheel Electricity System – Project Fact Sheet: Superconductivity for Electric Systems Program and Industry Partners. United States Department of Energy, USA.

    Google Scholar 

  19. R. Rieger (2014) Erstellung eines Prüfstandes für Sicherheitstests an Berstschutzgehäusen schnell drehender, isotroper Schwungscheiben und Definition des Prüfumfangs. Institut für Maschinenelemente und Entwicklungsmethodik, TU Graz, Österreich.

    Google Scholar 

  20. G. Portnov, A.-N. Uthe, I. Cruz, R. P. Fiffe und F. Arias (2005) Design of Steel-Composite Multirim Cylindrical Flywheels Manufactured by Winding with High Tensioning and in situ Curing – 2. Numerical Analysis. Mechanics of Composite Materials, pp. 241–254, Ausgabe Mai 2005.

    Google Scholar 

  21. Green Car Congress (2007) Flybrid Flywheel Hybrid System Passes First Crash. http://www.greencarcongress.com/2007/10/flybrid-flywhee.html. [Zugriff am 19. September 2010].

  22. Research Councils UK/Innovate UK (2014) FlySafe – Flywheel-hybrid safety engineering. UK Research and Innovation, Polaris House, Swindon, UK. https://gtr.ukri.org/projects?ref=101306.

  23. R. Nicolas (2015) A new flywheel test rig developed by Ricardo. http://www.car-engineer.com/a-new-flywheel-test-rig-developed-by-ricardo/. [Zugriff am 22. Juli 2016].

  24. Oak Ridge National Laboratory (2013) Oak Ridge National Laboratory Review. Oak Ridge National Laboratory’s Communications and Community Outreach. http://web.ornl.gov/info/ornlreview/rev25-34/chapter8.shtml. [Zugriff am 25. August 2016].

  25. P. von Burg (1996) Schnelldrehendes Schwungrad aus Faserkunststoff. ETH Zürich, Schweiz.

    Google Scholar 

  26. S. Renner-Smith (1980) Battery-saving flywheel gives electric car freeway zip. Popular Science, Ausgabe Oktober 1980.

    Google Scholar 

  27. J. Wheals, J. Taylor und W. Lanoe (2016) Rail Hybrid using Flywheel. Den Danske Banekonference, Tivoli Congress Centre, Kopenhagen, Dänemark.

    Google Scholar 

  28. A. C. Hagg und G. O. Sankey (1974) The Containment of Disk Burst Fragments by Cylindrical Shells. Journal of Engineering for Power, no. 96, pp. 114–123.

    Google Scholar 

  29. Naval Postgraduate School (1999) Mechanical and Aerospace Engineering – Turbopropulsion Laboratory and Gas Dynamics Laboratory. https://my.nps.edu/web/mae/turbo. [Zugriff am 24. Oktober 2018].

  30. NASA Glenn Research Center (2018) Special Projects Laboratory – Facility Description. National Aeronautics and Space Administration. https://www1.grc.nasa.gov/historic-facilities/special-projects-laboratory/facility-description/. [Zugriff am 31. August 2018].

  31. Schuster-Engineering GmbH (2009) Schuster-Engineering GmbH, Am Söterberg 2, D-66620 Nonnweiler/Otzenhausen. http://schuster-sondermaschinen.de/6.html. [Zugriff am 25. Oktober 2018].

  32. Schenck RoTec (2005) Spinning Service. SCHENCK RoTec GmbH, Landwehrstraße 55, D-64293 Darmstadt. https://schenck-rotec.com/services/balancing-and-spinning-service/spinning-service.html. [Zugriff am 25. Oktober 2018].

  33. Test Devices Inc. (2015) Test Devices Inc., 571 Main Street, Hudson, MA, USA. https://www.testdevices.com/equipment/productionproof-burst-rigs/. [Zugriff am 25. Oktober 2018].

  34. BSI – Barbour Stockwell Incorporated (2018) Barbour Stockwell, Inc. 45 Sixth Road, Woburn, Massachusetts 01801, USA. http://www.barbourstockwell.com/spin-test-services.html. [Zugriff am 25. Oktober 2018].

  35. Aerovent Industrial Ventilation Systems (2018) Aerovent, 5959 Trenton Lane North,Minneapolis, Minnesota 55442-3237, USA. https://www.aerovent.com/fan-testing-services/overspeed-testing/. [Zugriff am 25. Oktober 2018].

  36. Oceanfront Engineering (2018) Oceanfront Engineering, Fallbrook, CA 92028, USA. http://oceanfrontengineering.com/gallery/rotating-equipment/. [Zugriff am 25. Oktober 2018].

  37. Shanghai Lingling Balancing Machinery Co. (2015) Shanghai Lingling Balancing Machinery Co. Ltd., Build 2, Yong Lian Industrial Park, No168 HuaJi Road201108 Shanghai, Cina. http://www.linglingbalance.com/english-web/cp/cssyjj.html#OTS-300%E3%80%80%3E%3E. [Zugriff am 25. Oktober 2018].

  38. Piller TSC Blower Corporation (2015) Environmental XPRT. https://www.environmental-expert.com/services/overspeed-spin-test-214127. [Zugriff am 25. Oktober 2018].

  39. Element Materials Technology (2018). https://www.element.com/aerospace/aero-structures. [Zugriff am 25. Oktober 2018].

  40. P. Perzyna (1966) Fundamental Problems in Viscoplasticity. Advances in Applied Mechanics, Volume 9, p. 244–368.

    Google Scholar 

  41. J. F. Young, S. Mindess, A. Bentur und R. J. Gray (1998) The Science and Technology of Civil Engineering Materials, 1st Edition. Prentice Hall.

    Google Scholar 

  42. G.R. Johnson und W.H Cook (1983) A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperature. Proceedings of the 7th International Symposium on Ballistics, pp. 541-547, 19–21 April 1983.

    Google Scholar 

  43. A. Buchroithner, P. Haidl, C. Birgel, T. Zarl und H. Wegleiter (2018) Design and Experimental Evaluation of a Low-Cost Test Rig for Flywheel Energy Storage Burst Containment Investigation. Appl. Sci. 2018, 8, 2622. https://doi.org/10.3390/app8122622.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buchroithner, A. (2019). Gehäuse. In: Schwungradspeicher in der Fahrzeugtechnik. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25571-8_8

Download citation

Publish with us

Policies and ethics