Skip to main content

Wie strategisch sind Algorithmen? Die Rolle von Big Data und Analytics im Rahmen strategischer Entscheidungsprozesse

Zusammenfassung

Seit geraumer Zeit wird insbesondere von vielen Fachvertretern der Wirtschaftsinformatik und der Managementforschung die These artikuliert, die rasant steigenden Möglichkeiten im Rahmen von Big Data und Analytics (BDA) könnten – bei „richtigem“ Einsatz – die Wettbewerbsfähigkeit und auch den Erfolg von Unternehmen signifikant verbessern (vgl. z.B. Davenport, 2014; Barbosa, de la Calle Vicente, Ladeira & de Oliveira, 2018; Erevelles, Fukawa & Swayne, 2016; Gunasekaran et al., 2017). Hierfür wird eine große Bandbreite an theoretischen Ankerpunkten genutzt – z.B. die Transaktionskostentheorie (BDA kann die Transaktionseffizienz erhöhen, vgl. Waller & Fawcett, 2013), ressourcen- und kompetenzorientierte Ansätze (BDA als wertvolle Ressource/Fähigkeit, vgl. Braganza, Brooks, Nepelski, Ali & Moro, 2017) oder Informationsprozessansätze (BDA zur Reduzierung von Unsicherheiten und Mehrdeutigkeiten in Entscheidungsprozessen, vgl. Kowalczyk & Buxmann, 2014, 2015).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-658-25412-4_21
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-658-25412-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ansoff, H. I., Declerk, R. & Hayes, R. (Hrsg.). (1976). From strategic planning to strategic management. New York.

    Google Scholar 

  • AOM (2018). New AOM Specialized Conference 2018: Big Data and Managing in a Digital Economy. April 18-20. Hosted by the university of Surrey, UK. Verfügbar unter http://bigdata.aom.org [03.12.2018].

  • Arnott, D. & Pervan, G. (2014). A critical analysis of decision support systems research revisited: the rise of design science. Journal of Information Technology, 29, 269–293.

    Google Scholar 

  • Bamberger, I. & Wrona, T. (1996). Der Ressourcenansatz und seine Bedeutung für die Strategische Unternehmensführung. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (zfbf), 2, 130–153.

    Google Scholar 

  • Bamberger, I. & Wrona, T. (2012). Strategische Unternehmensführung – Strategien, Systeme, Methoden, Prozesse. München: Vahlen.

    Google Scholar 

  • Barbosa, M. W., de la Calle Vicente, A., Ladeira, M. B. & de Oliveira, M. P. V. (2018). Managing supply chain resources with Big Data Analytics: a systematic review. International Journal of Logistics Research and Applications, 21 (3), 177–200.

    Google Scholar 

  • Barnaghi, P., Sheth, A. & Henson, C. (2013). From data to actionable knowledge: Big data challenges in the web of things. IEEE Intelligent Systems, 28 (6), 6–11.

    Google Scholar 

  • Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: an empirical investigation. MIS Quarterly, 24 (1), 169–196.

    Google Scholar 

  • BITKOM (2015). Big Data und Geschäftsmodell-Innovationen in der Praxis: 40+ Beispiele. Verfügbar unter https://www.bitkom.org/sites/default/files/file/import/151229-Big-Dataund-GM-Innovationen.pdf [03.12.2018].

  • BMWi (2018). Big Data, Smart Data, next? Verfügbar unter https://www.digitale-technologien.de/DT/Redaktion/DE/Downloads/Publikation/Smart-Data/2018_08_19_Big_Data_Smart_Data_next.html [03.12.2018].

  • Braganza, A., Brooks, L., Nepelski, D., Ali, M. & Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328–337.

    Google Scholar 

  • Brynjolfsson, E., Hitt, L. & Kim, H. H. (2011). Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? (April 22, 2011). Verfügbar unter https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486 [03.12.2018].

  • Chen, D. Q., Preston, D. S. & Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32 (4), 4–39.

    Google Scholar 

  • Chen, M., Mao, S. & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19 (2), 171–209.

    Google Scholar 

  • Chen, R. S., Yeh, K. C., Chang, C. C. & Chien, H. H. (2006). Using data mining technology to improve manufacturing quality – A case study of LCD driver IC packaging industry. In: ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 115–119.

    Google Scholar 

  • Constantiou, I. D. & Kallinikos, J. (2015). New games, new rules: Big data and the changing context of strategy. Journal of Information Technology, 30 (1), 44–57.

    Google Scholar 

  • Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84 (1), 98–107.

    Google Scholar 

  • Davenport, T. H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Boston: Harvard Business Review Press.

    Google Scholar 

  • Davenport, T. H., Barth, P. & Bean, R. (2012). How ‘big data’ is different. MIT Sloan Management Review, 54 (1), 43–46.

    Google Scholar 

  • Dierickx, I. & Cool, K. (1989). Asset stock accumulation and sustainability of competitive advantage. Management science, 35 (12), 1504–1511.

    Google Scholar 

  • DiMaggio, P. J. & Powell, W. W. (1991). Introduction. In W.W. Powell & P. J. DiMaggio (Hrsg.), The new institutionalism in organizational analysis (S. 1–38). Chicago.

    Google Scholar 

  • Dursun, D. (2014). Real-Word Data Mining. New Jersey: Pearson Education Inc.

    Google Scholar 

  • Eisenhardt, K. M. & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21 (10–11), 1105–1121.

    Google Scholar 

  • Erevelles, S., Fukawa, N. & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69 (2), 897–904.

    Google Scholar 

  • EURAM (2018). SIG 13: Strategic Management (SM): ST 13_06 Strategic Ambidexterity: The paradox of exploitation and exploration. Verfügbar unter http://www.euramonline.org/programme2019/strategic-interest-groups/sig-13-strategic-management-sm.html [03.12.2018].

  • Fiol, M. (2001). Revisiting an identity-based view of sustainable competitive advantage. Journal of Management, 6, 691–699.

    Google Scholar 

  • Fiorini, P., Seles, B. M., Jabbour, C. J., Mariano, E. B. & Jabbour, A. B. (2018). Management theory and big data literature: From a review to a research agenda. International Journal of Information Management, 43, 112–129.

    Google Scholar 

  • Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G. & Gnanzou, D. (2015). How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165 (C), 234–246.

    Google Scholar 

  • Fraunhofer (2012). Big Data – Vorsprung durch Wissen. Innovationspotenzialanalyse. Verfügbar unter https://www.iais.fraunhofer.de/content/dam/iais/gf/bda/Downloads/Innovationspotenzialanalyse_Big-Data_FraunhoferIAIS_2012.pdf [03.12.2018].

  • George, G., Haas, M. & Pentland, A. (2014). Big Data und Management. Academy of Management Journal, 57 (2), 321–326.

    Google Scholar 

  • Grover, V., Chiang, R., Liang, T.-P. & Zhang, D. (2018). Creating strategic business value from Big Data Analytics: a research framework. Journal of Management Information Systems, 35 (2), 388–423.

    Google Scholar 

  • Gunasekaran, A., Papadopoulos, T., Dubey, R., Fosso Wamba, S., Childe, S. J., Hazen, B. & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70 (1), 308–317.

    Google Scholar 

  • Günther, W. A., Mehrizi, M. H. R., Huysman, M. & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26 (3), 191–209.

    Google Scholar 

  • Han, J., Kamber, M. & Pei, J. (2011). Data Mining: Concepts and techniques (3rd ed.). Elsevier.

    Google Scholar 

  • Hart, S. L. (1992). An integrative framework for strategy-making processes. Academy of Management Review, 17 (2), 327–351.

    Google Scholar 

  • Hartmann, P. M., Zaki, M., Feldmann, N. & Neely, A. (2014). Big Data for Big Business? A Taxonomy of Data-driven Business Models used by Start-up Firms. Working Paper, March 2014, University of Cambridge, Cambridge Service Alliance.

    Google Scholar 

  • Helfat, C. E. (1997). Know-how and asset complementarity and dynamic capability accumulation: the case of R&D. Strategic Management Journal, 18, 339–360.

    Google Scholar 

  • Hill, R. K. (2015). What an algorithm is. Philosophy & Technology 29(1): 35–59.

    Google Scholar 

  • Holsapple, C., Lee-Post, A. & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130–141.

    Google Scholar 

  • Huff, A. S. & Reger, R. K. (1987). A review of strategic process research. Journal of Management, 13 (2), 211–236.

    Google Scholar 

  • Kersten, W., von See, B. & Indorf, M. (2018). Digitalisierung als Wegbereiter für effizientere Wertschöpfungsnetzwerke. In A. Khare, D. Kessler & J. Wirsam (Hrsg.), Marktorientiertes Produkt- und Produktionsmanagement in digitalen Umwelten. Wiesbaden: Springer Gabler.

    Google Scholar 

  • Kersten, W. (2018). Geschäftsmodelle in der Industrie 4.0, in H. Corsten, R. Gössinger & T. S. Spengler (Hrsg.), Handbuch Produktions- und Logistikmanagement in Wertschöpfungsnetzwerken (S. 1286–1303). De Gruyter Handbook. Berlin: De Gruyter Oldenbourg.

    Google Scholar 

  • Kersten, W., Schröder, M. & Indorf, M. (2017). Potenziale der Digitalisierung für das Supply Chain Risikomanagement: Eine empirische Analyse. In M. Seiter, L. Grünert & S. Berlin (Hrsg.), Betriebswirtschaftliche Aspekte von Industrie 4.0 (S. 47–74). Wiesbaden: Springer Gabler.

    Google Scholar 

  • Kersten, W., Seiter, M., von See, B., Hackius, N. & Maurer, T. (2017). Trends und Strategien in Logistik und Supply Chain Management - Chancen der digitalen Transformation. Studie der Bundesvereinigung Logistik. Bremen.

    Google Scholar 

  • Kieser, A. (1996). Moden & Mythen des Organisierens. Die Betriebswirtschaft: DBW 56 (1), 21–39.

    Google Scholar 

  • Kirsch, W. (1996). Wegweiser zur Konstruktion einer evolutionären Theorie der strategischen Führung. Kapitel eines Theorieprojektes. München: Verlag B. Kirsch.

    Google Scholar 

  • Koch, J., Krämer, H., Rechkwitz, A. & Wenzel, M. (2016). Zum Umgang mit Zukunft in Organisationen – eine praxistheoretische Perspektive. Managementforschung, 26, 161–184.

    Google Scholar 

  • Kowalczyk, M. & Buxmann, P. (2014). Big data and information processing in organisational decision processes. Business & Information Systems Engineering, 6, 267–278.

    Google Scholar 

  • Kowalczyk, M. & Buxmann, P. (2015). An ambidextrous perspective on business intelligence and analytics support in decision processes: Insights from a multiple case study. Decision Support Systems, 80, 1–30.

    Google Scholar 

  • Leonard‐Barton, D. (1992). Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13 (1), 111–125.

    Google Scholar 

  • Loebbecke, C. & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: a research agenda. Journal of Strategic Information Systems, 24 (3), 149–157.

    Google Scholar 

  • March, J. G. (1995). The future, disposable organizations and the rigidities of imagination. Organization, 2 (3–4), 427–440.

    Google Scholar 

  • Markides, C. C. (2013). Game-changing strategies: How to create new market space in established industries by breaking the rules. Chichester: John Wiley & Sons.

    Google Scholar 

  • Mazoué, J. G. (1990). Diagnosis without doctors. Journal of Medicine and Philosophy 15(6), 559–579.

    Google Scholar 

  • Mazzei, M. J. & Noble, D. (2017). Big data dreams: A framework for corporate strategy. Business Horizons, 60 (3), 405–414.

    Google Scholar 

  • McAfee, A. & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90 (10), 60–68.

    Google Scholar 

  • Menn, A. (2018). Arzt trifft Algorithmus. WirtschaftsWoche, Nr. 46/2018, 86–89.

    Google Scholar 

  • Mintzberg, H. (1978). Patterns in strategy formation. Management Science, 24 (9), 934–948.

    Google Scholar 

  • Mithas, S., Ramasubbu, N. & Sambamurthy, V. (2011). How Information Management Capability Influences Firm Performance. MIS Quarterly, 35 (1), 237–256.

    Google Scholar 

  • Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3 (2), 1–21.

    Google Scholar 

  • Noss, C. (2013). Strategisches Management und Zeit: Auf dem Weg zu einem integrativen Konzept zeitinduzierter Wettbewerbsvorteile. Managementforschung, 23, 83–126.

    Google Scholar 

  • Papadakis, V. & Barwise, P. (Hrsg.). (1998). Strategic decisions. Context, process and outcomes London et al.

    Google Scholar 

  • Petersen, M., Hackius, N. & Kersten, W. (2016). Blockchains für Produktion und Logistik. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111 (10), 626–629.

    Google Scholar 

  • Porter, M. E. (1985). Competitive Advantage. Creating and sustaining superior performance. New York: Free Press.

    Google Scholar 

  • Porter, M. E. (1996). What is strategy? Harvard Business Review, 74 (6), 6–78.

    Google Scholar 

  • Porter, M. E. (1999). Wettbewerbsvorteile (5., durchgesehene und erweiterte Auflage). Frankfurt a.M., New York.

    Google Scholar 

  • Porter, M. E. (2001). Strategy and the Internet. Harvard Business Review, 79 (3), 62–78.

    Google Scholar 

  • Porter, M. E. & Heppelmann, J. E. (2014). How Smart, Connected Products Are Transforming Competition. Harvard Business Review, 92 (11), 64–88.

    Google Scholar 

  • Porter, M. E. & Millar, V. P. (1985). How Information Gives You Competitive Advantage. Harvard Business Review, 63 (4), 149–160.

    Google Scholar 

  • Rajagopalan, N., Rasheed, A. M. A. & Datta, D. K. (1993). Strategic decision processes. Critical review and future directions. Journal of Management, 19 (2), 349–384.

    Google Scholar 

  • Reed, R. & DeFillippi, R. J. (1990). Causal ambiguity, barriers to imitation, and sustainable competitive advantage. Academy of Management Review, 15 (1), 88–102.

    Google Scholar 

  • Rothmann, W. & Koch, J. (2014). Creativity in strategic lock-ins: the newspaper industry and the digital revolution. Technological Forecasting and Social Change, 83 (3), 66–83.

    Google Scholar 

  • Rumelt, R. P. (1974). Strategy, structure and economic performance. Boston/Mass.

    Google Scholar 

  • Rumelt, R. P., Schendel, D. & Teece, D. J. (1991). Strategic management and economics. Strategic Management Journal, 12, Special Issue (Winter), 5–29.

    Google Scholar 

  • Sambamurthy, V., Bharadwaj, A. & Grover, V. (2003). Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 27 (2), 237–263.

    Google Scholar 

  • Schildt, H. (2017). Big data and organizational design – the brave new world of algorithmic management and computer augmented transparency. Innovation, 19 (1), 23–30.

    Google Scholar 

  • Schreyögg, G., Sydow, J. & Koch, J. (2003). Organisatorische Pfade – Von der Pfadabhängigkeit zur Pfadkreation. Managementforschung, 13, 257–294.

    Google Scholar 

  • Schreyögg, G. & Sydow, J. (2011). Organizational Path Dependence: A Process View. Organization Studies, 32 (3), 321–335.

    Google Scholar 

  • Schumpeter, J. A. (1942). Capitalism, socialism and democracy. New York: Harper.

    Google Scholar 

  • Schwenk, C. R. (1995). Strategic decision-making. Journal of Management, 21 (3), 471–493.

    Google Scholar 

  • Sena, V., Demirbag, M., Bhaumik, S. & Sengupta, A. (2017). Big Data and Performance. British Journal of Management, 28 (3), 551–553.

    Google Scholar 

  • Shanks, G. & Sharma, R. (2011). Creating value from business analytics systems: the impact of strategy. 15th Pacific Asia Conference on Information Systems: Quality Research in Pacific, PACIS 2011 (S. 1–12). Queensland: Queensland University of Technology.

    Google Scholar 

  • Sharma, R., Mithas, S. & Kankanhalli, A. (2014). Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23 (4), 433–441.

    Google Scholar 

  • Sheng, J., Amankwah-Amoah, J. & Wang, X. (2017). A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191 (1), 97– 112.

    Google Scholar 

  • Shollo, A. & Galliers, R. D. (2016). Towards an understanding of the role of business intelligence systems in organizational knowing. Information Systems Journal, 26 (4), 339–367.

    Google Scholar 

  • Sydow, J., Schreyögg, G. & Koch, J. (2009). Organizational path dependence: Opening the black box. Academy of management review, 34 (4), 689–709.

    Google Scholar 

  • Teece, D. J., Pisano, G. & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18, 509–533.

    Google Scholar 

  • Vidgen, R., Shaw, S. & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261 (2), 626–639.

    Google Scholar 

  • Von Oetinger, B. (2012). Strategie und Metaphorik. In I. Bamberger & T. Wrona (Hrsg.), Strategische Unternehmensberatung (S. 231–241). Wiesbaden: Gabler.

    Google Scholar 

  • Waller, M. A. & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34 (2), 77–84.

    Google Scholar 

  • Wenzel, M., Wagner, H.-T. & Koch, J. (2017). The funeral industry and the Internet: on the historical emergence and destabilization of strategic paths. European Journal of Information Systems, 26, 361–378.

    Google Scholar 

  • Wixom, B. & Watson, H. (2010). The BI-based organization. International Journal of Business Intelligence Research, 1 (1), 13–28.

    Google Scholar 

  • Zuboff, S. (1985). Automate/informate: The two faces of intelligent technology. Organizational Dynamics, 14 (2), 5–18.

    Google Scholar 

  • Zuboff, S. (1988). In the age of the smart machine: The future of work and power. New York, NY: Basic Books.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wrona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Wrona, T., Reinecke, P. (2019). Wie strategisch sind Algorithmen? Die Rolle von Big Data und Analytics im Rahmen strategischer Entscheidungsprozesse. In: Schröder, M., Wegner, K. (eds) Logistik im Wandel der Zeit – Von der Produktionssteuerung zu vernetzten Supply Chains. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-25412-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-25412-4_21

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-25411-7

  • Online ISBN: 978-3-658-25412-4

  • eBook Packages: Business and Economics (German Language)