Skip to main content

Blind Rigid Motion Estimation for Arbitrary MRI Sampling Trajectories

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2019

Part of the book series: Informatik aktuell ((INFORMAT))

  • 2040 Accesses

Zusammenfassung

In this publication, a new blind motion correction algorithm for magnetic resonance imaging for arbitrary sampling trajectories is presented. Patient motion during partial measurements is estimated. Exploiting the image design, a sparse approximation of the reconstructed image is calculated with the alternating direction method of multipliers. The approximation is used with gradient descent methods with derivatives of a rigid motion model to estimate the motion and extract it from the measured data. Adapted gridding is performed in the end to receive reconstruction images without motion artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Pipe JG, Gibbs WN, Li Z, et al. Revised motion estimation algorithm for PROPELLER MRI. Magn Reson Med. 2014;72(2):430–437.

    Article  Google Scholar 

  2. Möller A, Maaß M, Mertins A. Blind sparse motion MRI with linear subpixel interpolation. Proc BVM. 2015; p. 510–515.

    Google Scholar 

  3. Hormann K. Barycentric interpolation. Approximation Theory XIV: San Antonio. 2014; p. 197–218.

    Google Scholar 

  4. Aurenhammer F, Klein R, Lee DT. Voronoi Diagrams and Delaunay Triangulations. WORLD SCIENTIFIC; 2013.

    Google Scholar 

  5. Keiner J, Kunis S, Potts D. Using NFFT 3: a software library for various nonequispaced fast fourier transforms. ACM Trans Math Softw. 2009;36(4):19:1–19:30.

    Google Scholar 

  6. Parikh N, Boyd S. Proximal algorithms. Found Trends Optim. 2014;1(3):127–239.

    Article  MathSciNet  Google Scholar 

  7. Nocedal J, Wright SJ. Numerical Optimization. 2nd ed. New York: Springer; 2006.

    Google Scholar 

  8. Pipe JG, Menon P. Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med. 1999;41(1):179–186.

    Article  Google Scholar 

  9. Johnson KO, Pipe JG. Convolution kernel design and effcient algorithm for sampling density correction. Magn Reson Med. 2009;61(2):439–447.

    Article  Google Scholar 

  10. Bentley JL. Multidimensional binary search trees used for associative searching. Commun ACM. 1975;18(9):509–517.

    Article  Google Scholar 

  11. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42(5):963–969.

    Article  Google Scholar 

  12. Cocosco CA, Kollokian V, Kwan RKS, et al. BrainWeb: online interface to a 3D MRI simulated brain database. Neuroimage. 1997;5:425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Möller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Möller, A., Maass, M., Parbs, T.J., Mertins, A. (2019). Blind Rigid Motion Estimation for Arbitrary MRI Sampling Trajectories. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2019. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25326-4_28

Download citation

Publish with us

Policies and ethics