Blind Rigid Motion Estimation for Arbitrary MRI Sampling Trajectories

  • Anita MöllerEmail author
  • Marco Maass
  • Tim J. Parbs
  • Alfred Mertins
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


In this publication, a new blind motion correction algorithm for magnetic resonance imaging for arbitrary sampling trajectories is presented. Patient motion during partial measurements is estimated. Exploiting the image design, a sparse approximation of the reconstructed image is calculated with the alternating direction method of multipliers. The approximation is used with gradient descent methods with derivatives of a rigid motion model to estimate the motion and extract it from the measured data. Adapted gridding is performed in the end to receive reconstruction images without motion artifacts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pipe JG, Gibbs WN, Li Z, et al. Revised motion estimation algorithm for PROPELLER MRI. Magn Reson Med. 2014;72(2):430–437.CrossRefGoogle Scholar
  2. 2.
    Möller A, Maaß M, Mertins A. Blind sparse motion MRI with linear subpixel interpolation. Proc BVM. 2015; p. 510–515.Google Scholar
  3. 3.
    Hormann K. Barycentric interpolation. Approximation Theory XIV: San Antonio. 2014; p. 197–218.Google Scholar
  4. 4.
    Aurenhammer F, Klein R, Lee DT. Voronoi Diagrams and Delaunay Triangulations. WORLD SCIENTIFIC; 2013.Google Scholar
  5. 5.
    Keiner J, Kunis S, Potts D. Using NFFT 3: a software library for various nonequispaced fast fourier transforms. ACM Trans Math Softw. 2009;36(4):19:1–19:30.Google Scholar
  6. 6.
    Parikh N, Boyd S. Proximal algorithms. Found Trends Optim. 2014;1(3):127–239.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nocedal J, Wright SJ. Numerical Optimization. 2nd ed. New York: Springer; 2006.Google Scholar
  8. 8.
    Pipe JG, Menon P. Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn Reson Med. 1999;41(1):179–186.CrossRefGoogle Scholar
  9. 9.
    Johnson KO, Pipe JG. Convolution kernel design and effcient algorithm for sampling density correction. Magn Reson Med. 2009;61(2):439–447.CrossRefGoogle Scholar
  10. 10.
    Bentley JL. Multidimensional binary search trees used for associative searching. Commun ACM. 1975;18(9):509–517.CrossRefGoogle Scholar
  11. 11.
    Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42(5):963–969.CrossRefGoogle Scholar
  12. 12.
    Cocosco CA, Kollokian V, Kwan RKS, et al. BrainWeb: online interface to a 3D MRI simulated brain database. Neuroimage. 1997;5:425.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Anita Möller
    • 1
    Email author
  • Marco Maass
    • 1
  • Tim J. Parbs
    • 1
  • Alfred Mertins
    • 1
  1. 1.Institute for Signal ProcessingUniversität zu LübeckLübeckDeutschland

Personalised recommendations