Skip to main content

Fatigue behavior of X10CrNiMoV12-2-2 under the influence of mean loads and stress concentration factors in the very high cycle fatigue regime

  • Chapter
  • First Online:
Fatigue of Materials at Very High Numbers of Loading Cycles
  • 1577 Accesses

Abstract

In this study the fatigue behavior of X10CrNiMoV12-2-2 has been investigated for different stress concentration factors (1.00 < αk < 2.42) and load ratios from R = -1 to R = 0.7 up to 2∙109 load cycles at room temperature. The tests were performed under axial loading using ultrasonic fatigue testing setups of the type BOKU Vienna and a system developed at the Institute of Materials Science and Engineering (WKK) of TU Kaiserslautern. For cylindrical samples and specimens with low stress concentration factor (αk = 1.09) the S-N-curves show a flat slope with no significant decrease of the fatigue strength in the VHCF-regime. A transition of crack initiation from surface to volume cracks starting at oxide inclusions of the type AlCaO or AlCaMgO can be observed at about 1∙107 load cycles for load ratios from R = -1 up to 0.5. The maximum number of load cycles where sample failure occurs increases with increasing load ratio. For R = 0.5 fatigue fractures occur even beyond 2∙109 load cycles. Murakami`s widely accepted √area-approach [1] shows a good correlation for a wide range of R-values over four decades of the fatigue life. Fracture surfaces for internal crack initiation show the typical fish-eye structure around the inclusion. A fine granular area can only be observed for a load ratio of R = -1. The mechanism by Grad et al. [2] can describe the FGA formation. FGAs could not be observed for higher load ratios. For specimens with high stress concentration factor (αk = 2.42) the maximum number of load cycles where fracture occurs is about 1∙106 load cycles which means no VHCF-failure can be observed. In this case, cracks are always initiated at small machining induced surface defects. In the HCF-regime the S-N-curve shows a steeper slope which is typical for notched samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] Y. Murakami, S. Kodama and S. Konuma: ‘Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions’, Int. J. Fatigue, 1989, 11, 291-298.

    Article  CAS  Google Scholar 

  • [2] P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski and E. Kerscher: ‘Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels’, Scripta Mater., 2012, 67, 838-841.

    Article  CAS  Google Scholar 

  • [3] S. Zhou and A. Turnbull: ‘Influence of pitting on the fatigue life of a turbine blade steel’, Fatigue Fract. Eng. M., 1999, 22, 1083-1093.

    Google Scholar 

  • [4] K. M. Perkins and M. R. Bache: ‘The influence of inclusions on the fatigue performance of a low pressure turbine blade steel’, Int. J. Fatigue, 2005, 27, 610-616.

    Article  CAS  Google Scholar 

  • [5] H. Mughrabi: ‘Specific features and mechanisms of fatigue in the ultrahigh-cycle regime’, Int. J. Fatigue, 2006, 28, 1501-1508.

    Article  CAS  Google Scholar 

  • [6] Y. Murakami, T. Nomoto and T. Ueda: ‘On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions’, Fatigue Fract. Eng. M., 2000, 23, 893-902.

    Google Scholar 

  • [7] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: ’Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime’, Int. J. Fatigue, 2006, 28, 1521-1532.

    Article  CAS  Google Scholar 

  • [8] T. Sakai: ‘Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use’, Journal of solid Mechanics and Materials Engineering, 2009, 3, 425-439.

    Article  Google Scholar 

  • [9] Y. Hong, X. Liu, Z. Lei and C. Sun: ‘The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels’, Int. J. Fatigue, 2016, 89, 108-118.

    Article  CAS  Google Scholar 

  • [10] R. Schuller, U. Karr, D. Irrasch, M. Fitzka, M. Hahn, M. Bacher-Höchst and H. Mayer: ‘Mean stress sensitivity of spring steel in the very high cycle fatigue regime’, J. Mater. Sci., 2015, 50, 5514-5523.

    Article  CAS  Google Scholar 

  • [11] S. Kovacs, T. Beck and L. Singheiser: ‘Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime’, Int. J. Fatigue, 2013, 49, 90-99.

    Article  CAS  Google Scholar 

  • [12] T. Nakamura, H. Oguma and Y. Shinohara: ‘The effect of vacuum-like environment inside sub-surface fatigue crack on the formation of ODA fracture surface in high strength steel’, Proc. Eng., 2010, 2, 2121-2129.

    Article  Google Scholar 

  • [13] M. Sander, T. Müller and J. Lebahn: ‘Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime’, Int. J. Fatigue, 2014, 62, 10-20.

    Google Scholar 

  • [14] B. M. Schönbauer, A. Perlega, U. P. Karr, D. Gandy and S. E. Stanzl-Tschegg: ‘Pit-to-crack transition under cyclic loading in 12% Cr steam turbine blade steel’, Int. J. Fatigue, 2015, 76, 19-32.

    Article  Google Scholar 

  • [15] B. M. Schönbauer, K. Yanase and M. Endo: ‘VHCF properties and fatigue limit prediction of precipitation hardened 17-4PH stainless steel’, Int. J. Fatigue, 2016, 88, 205-216.

    Article  Google Scholar 

  • [16] B. Pyttel, D. Schwerdt and C. Berger: ‘Fatigue strength and failure mechanisms in the VHCF-region for quenched and tempered steel 42CrMoS4 and consequences to fatigue design’, Proc. Eng., 2010, 2, 1327-1336.

    Article  Google Scholar 

  • [17] B. M. Schönbauer, K. Yanase and M. Endo: ‘Influence of intrinsic and artificial defects on the VHCF properties of 17-4PH stainless steel’, Proc. Struct. Integ., 2016, 2, 1149-1155.

    Article  Google Scholar 

  • [18] Y. Akiniwa, N. Miyamoto, H. Tsuru and K. Tanakaa: ‘Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime’, Int. J. Fatigue, 2006, 28, 1555-1565.

    Article  CAS  Google Scholar 

  • [19] Y. Murakami, T. Nomoto and T. Ueda: ‘On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part II: influence of hydrogen trapped by inclusions’, Fatigue Fract. Eng. M., 2000, 23, 903-910.

    Google Scholar 

  • [20] D. Dengel: ‘Die arcsin√P-Transformation – ein einfaches Verfahren zur grafischen und rechnerischen Auswertung geplanter Wöhlerversuche’, Materialwissenschaft und Technik, 1975, 6, 253-261.

    Google Scholar 

  • [21] M. M. Ghoneim: ‘Effect of strain rate and temperature on the tensile properties of MANET II steel’, J. Mater. Eng. Perform., 1997, 6, 511-516.

    Article  CAS  Google Scholar 

  • [22] T. Sakai, Y. Sato, Y. Nagano, M. Takeda and N. Oguma: ‘Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading’, Int. J. Fatigue, 2006, 28, 1547-1554.

    Article  CAS  Google Scholar 

  • [23] T. Beck, S. A. Kovacs and F. Ritz: ‘VHCF Behavior and Work Hardening of a Ferritic-Martensitic Steel at High Mean Stresses’, Key Eng. Mat., 2016, 664, 246-254.

    Article  Google Scholar 

  • [24] D. Spriestersbach, A. Brodyanski, J. Lösch, M. Kopnarski and E. Kerscher: ‘Very high cycle fatigue of high-strength steels: Crack initiation by FGA formation investigated at artificial defects’, Proc. Struct. Integ., 2016, 2, 1101-1108.

    Article  Google Scholar 

  • [25] B. M. Schönbauer and S.E. Stanzl-Tschegg: ‘Influence of environment on the fatigue crack growth behaviour of 12% Cr steel’, Ultrasonics, 2013, 53, 1399-1405.

    Google Scholar 

  • [26] B. M. Schönbauer, S. E. Stanzl-Tschegg, A. Perlega, R. N. Salzman, N. F. Rieger, A. Turnbull, S. Zhou, M. Lukaszewicz and D. Gandy: ‘The influence of corrosion pits on the fatigue life of 17-4PH steam turbine blade steel’, Eng. Fract. Mech., 2015, 147, 158-175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kovacs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritz, F., Beck, T., Kovacs, S. (2018). Fatigue behavior of X10CrNiMoV12-2-2 under the influence of mean loads and stress concentration factors in the very high cycle fatigue regime. In: Christ, HJ. (eds) Fatigue of Materials at Very High Numbers of Loading Cycles. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-24531-3_12

Download citation

Publish with us

Policies and ethics