Skip to main content

Virtualization for Verifying Functional Safety of Highly Automated Driving Using the Example of a Real ECU Project

  • Conference paper
  • First Online:
Fahrerassistenzsysteme 2018

Part of the book series: Proceedings ((PROCEE))

Abstract

Validating and verifying highly automated driving (HAD) systems is a huge challenge due to their complexity, short development cycles, and legal safety requirements. The latter are defined by ISO 26262, a standard for functional safety of automotive electric/electronic systems. ECU virtualization is key to mastering this challenge because it allows to transfer testing tasks from the road to simulations on a large scale. If a data-driven approach is chosen for this purpose, comprehensive, loss-free, and time-synchronized recordings of measurement data are required, which must be gathered during extensive test drives. Huge data volumes are the result. These volumes need to be managed, categorized, and processed in a way that they can serve as an input for simulated test drives later. In case of a model-driven approach, the accuracy of the models of driver, vehicle and environment is crucial to obtain meaningful test results. During ECU virtualization, it is vital that the virtual ECU reproduces the behavior of the real ECU as closely as possible. ETAS ISOLAR-EVE can provide substantial benefit due to its way of virtualization. In the end, the value of virtualization depends on sufficient equivalence of the simulated system behavior with the real system behavior. If this can be proven, simulation and virtualization can minimize the need for expensive prototypes, test vehicles, and test drives, while at the same time satisfying legal requirements. In addition, virtualization allows to keep development cycles short and costs limited. The feasibility of this approach is shown using the example of a real ECU project, for which ETAS has provided tools and consulting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.vdi-wissensforum.de/news/autosar-for-next-generation-cars/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, J., Löchner, J., Kust, O. (2019). Virtualization for Verifying Functional Safety of Highly Automated Driving Using the Example of a Real ECU Project. In: Bertram, T. (eds) Fahrerassistenzsysteme 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23751-6_6

Download citation

Publish with us

Policies and ethics