Skip to main content

Investigation and Simulation of Gasoline in a Diesel Fuel Injector for Gasoline Compression Ignition Applications

  • Conference paper
  • First Online:
11. Tagung Einspritzung und Kraftstoffe 2018

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Future demand for middle distillates in the commercial sector is expected to rise in step with increased economic activity in much of the world. Simultaneously, the passenger car fleet will experience various degrees of electrification and demand for gasoline is expected to fall. This divergence in demand will offer an opportunity to commercial vehicle owners if gasoline fuel streams can be burned efficiently in commercial engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  2. US Energy Information Administration, 2016. International Energy Outlook 2016. DOE/EIA-0484 (2016).

    Google Scholar 

  3. ExxonMobil, 2016. The Outlook for Energy: A View to 2040. http://cdn.exxonmobil.com/_/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf.

  4. World Energy Council, 2012. Global Transport Scenarios 2050. https://www.worldenergy.org/wpcontent/uploads/2012/09/wectransportscenarios2050.pdf.

  5. Heywood, John B. Internal Combustion Engine Fundamentals. New York McGraw-Hill, 1988.

    Google Scholar 

  6. Manente, V., Johansson, B., and Tunestal, P., 2009, “Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel,” SAE Paper No. 2009-01-0944.

    Google Scholar 

  7. Manente, V., Zander, C., Johansson, B., Tunestal, P., and Cannella, W., 2010, “An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency From Idle to Max Load Using Gasoline Partially Premixed Combustion,” SAE Paper No. 2010-01-2198.

    Google Scholar 

  8. Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrerr, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, “Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime,” SAE Int. J. Engines, 4(1), pp. 1412–1430.

    Article  Google Scholar 

  9. Kolodziej, C., Kodavasal, J., Ciatti, S., Som, S., Shidore, N., and Delhom, J., 2015, “Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle,” SAE Paper No. 2015-01-0832.

    Google Scholar 

  10. Won, H., Peters, N., Pitsch, H., Tait, N., and Kalghatgi, G., 2013, “Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine,” SAE Paper No. 2013-01-2539.

    Google Scholar 

  11. Chang, J., Kalghatgi, G., Amer, A., and Viollet, Y., 2012, “Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion,” SAE Paper No. 2012-01-0677.

    Google Scholar 

  12. Chang, J., Kalghatgi, G., Amer, A., Adomeit, P., Rohs, H., and Heuser, B., 2013, “Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability With EURO6 Engine-Out NOx Emission,” SAE Int. J. Engines, 6(1), pp. 101–119.

    Article  Google Scholar 

  13. Leermakers, C., Bakker, P., Somers, L., de Goey, L., and Johansson, B. H., 2013, “Commercial Naphtha Blends for Partially Premixed Combustion,” SAE Int. J. Fuels Lubr., 6(1), pp. 199–216.

    Article  Google Scholar 

  14. Sellnau, M., Moore, W., Sinnamon, J., Hoyer, K., Foster, M., and Husted, H., 2015, “GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions,” SAE Int. J. Engines, 8(2), pp. 775–790.

    Article  Google Scholar 

  15. Kolodziej, C., Sellnau, M., Cho, K., and Cleary, D., 2016, “Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels,” SAE Int. J. Engines, 9(2), pp. 979–1001.

    Google Scholar 

  16. Zhang, Y., Voice, A., Pei, Y., Traver, M., and Cleary, D., 2018, “Fuel Chemical and Physical Properties and Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine”, ASME J. Energy Resour. Technol., 140(10), p. 102202.

    Article  Google Scholar 

  17. Kalghatgi, Gautam, Fuel/Engine Interactions, SAE International, Warrendale, PA, 2014.

    Book  Google Scholar 

  18. Pei, Y., Torelli, R., Tzanetakis, T., Zhang, Y., Traver, M., Cleary, D. and Som, S. “Modeling the Fuel Spray of a High Reactivity Gasoline Under Heavy-Duty Diesel Engine Conditions”, Proc. of the ASME ICE Division Fall Technical Conference, ICEF2017-3530, 2017.

    Google Scholar 

  19. Zhang, Y., Sommers, S., Pei, Y., Kumar, P. et al., “Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine,” SAE Technical Paper 2017-01-0696, 2017.

    Google Scholar 

  20. Tang. M., Zhang, J., Menucci, T., Schmidt, H., Lee, S-Y., Naber. J. and Tzanetakis, T., “Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part I: Non-Reacting, Non-Vaporizing Sprays”, ILASS-Americas 2017, Atlanta, GA.

    Google Scholar 

  21. Zhang, J., Tang, M., Menucci, T., Schmidt, H., Lee, S-Y., Naber, J. and Tzanetakis, T., “Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part II: Non-Reacting, Vaporizing Sprays”, ILASS-Americas 2017, Atlanta, GA.

    Google Scholar 

  22. Tang, M., Zhang, J., Menucci, T., Schmidt, H., Lee, S-Y., Naber, J., Tzanetakis, T., “Experimental Spray Ignition and Soot Forming Characteristics of High Reactivity Gasoline and Diesel Fuel in a Heavy-Duty Single-Hole Injector,” Proceedings 10th US National Combustion Meeting – Eastern States Section of the Combustion Institute, College Park, MD, April 2017.

    Google Scholar 

  23. Voice, A., Tzanetakis, T., and Traver, M, “Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives”, SAE Paper 2017-01-0871, 2017.

    Google Scholar 

  24. Tzanetakis, T., Voice, A. and Traver, M., “Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like [21] Fuel”, SAE Paper 2018-01-0270, 2018.

    Google Scholar 

  25. Matusik, K.E., Duke, D.J., Kastengren, A.L., Sovis, N., Swantek, A.B., and Powell, C.F. “High-resolution x-ray tomography of Engine Combustion Network diesel injectors”. IJER 2017; 00(0):1-14.

    Google Scholar 

  26. J. P. Viera, R. Payri, A. B. Swantek, D. J. Duke, N. Sovis, A. L. Kastengren, C. F. Powell, “Linking instantaneous rate of injection to x-ray needle lift measurements for a direct-acting piezoelectric injector”,. Energy Conversion & Management pp. 350-358, January 2016

    Article  Google Scholar 

  27. Richards, K., Senecal, P., Pomraning, E. (2016). CONVERGE Manual (Version 2.3). Convergent Science Inc., Madison, WI, USA. https://convergecfd.com, accessed 04/17/2018.

  28. Bilicki, Z., Kestin, J. (1990). Physical Aspects of the Relaxation Model in Two-Phase Flow. Proceedings of the Royal Society London A, Vol. 428, pp. 379-397.

    Article  Google Scholar 

  29. Torelli, R., Som, S., Pei, Y., Zhang, Y., Voice, A., Traver, M., Cleary, D. (2017) Comparison of In-Nozzle Flow Characteristics of Naphtha and N-Dodecane Fuels. SAE Technical Paper 2017-01-0853.

    Google Scholar 

  30. Torelli, R. Matusik, K., Nelli, K., Kastengren, A., Fezzaa, K., Powell, C., Som, S., Pei, Y., Tzanetakis, T., Zhang, Y., Traver, M., Cleary D. (2018). Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry. SAE Technical Paper 2018-01-0303.

    Google Scholar 

  31. Saha, K., Quan, S., Battistoni, M., Som, S., Senecal, P. K., Pomraning, E. (2017). Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems. SAE Technical Paper 2017-01-0834.

    Google Scholar 

  32. Kastengren, A., Tilocco, F., Powell, C., Manin, J., Pickett, L. M., Payri, R., Bazyn, T. (2013). Engine Combustion Network (ECN): Measurements of Nozzle Geometry and Hydraulic Behavior. Atomization and Sprays, Vol. 22(12), pp. 1011–1052.

    Google Scholar 

  33. Torelli, R., Som, S., Pei, Y., Zhang, Y., Traver, M. (2017). Influence of Fuel Properties on Internal Nozzle Flow Development in a Multi-Hole Diesel Injector. Fuel, Vol. 204, pp. 171-184.

    Google Scholar 

  34. Torelli, R., Som, S., Pei, Y., Zhang, Y., Traver, M. (2017). Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions. ILASS Americas, 29th Annual Conf. on Liquid Atomization and Spray Systems, Atlanta, GA.

    Google Scholar 

  35. Torelli, R. Matusik, K., Sforzo, B., Kastengren, A., Powell, C., Som, S., Pei, Y., Tzanetakis, Y., Traver, (2018). In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gasoline-Like Fuels. 10th International Cavitation Symposium, CAV2018, Baltimore, MD.

    Google Scholar 

  36. Torelli, R., Sforzo, B. A., Matusik, K., Kastengren, A., Fezzaa, K., Powell, C., Som, S., Pei, Y., Tzanetakis, T., Zhang, Y., Traver, M., Cleary D. J. (2018). Investigation of Shot-to-Shot Variability during Short Injections. ICLASS 2018, 14th Triennial Int. Conf. on Liquid Atomization and Spray Systems, Chicago, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Traver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Traver, M., Pei, Y., Tzanetakis, T., Torelli, R., Powell, C., Som, S. (2019). Investigation and Simulation of Gasoline in a Diesel Fuel Injector for Gasoline Compression Ignition Applications. In: Tschöke, H., Marohn, R. (eds) 11. Tagung Einspritzung und Kraftstoffe 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23181-1_21

Download citation

Publish with us

Policies and ethics