Skip to main content

A New Model for Predicting the Knock Boundary with EGR at Full Load (Ein neues Modell zur Vorhersage der Klopfgrenze bei Volllast-AGR)

  • Conference paper
  • First Online:
  • 1988 Accesses

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

The ongoing trend of enforcing lower fuel consumption and tightening emission standards, combined with ever-increasing customer demands and severe competition on the global market is the main driving force for further improvement of the internal combustion engine regarding its efficiency and emissions. The most significant operation limit of spark ignition (SI) engines still prohibiting the accomplishment of these goals is the occurrence of knock, although this phenomenon has been observed for the first time almost 100 years ago. High compression ratios, which are desired for further improving efficiency, result in increased cylinder pressures and temperatures that, in turn, promote the occurrence of knock.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heywood J. B., “Internal combustion engine fundamentals,” McGraw-Hill, Inc., USA, 1988.

    Google Scholar 

  2. Kleinschmidt, W., “Zur Simulation des Betriebs von Ottomotoren an der Klopfgrenze,” Association of German Engineers (VDI) Progress Reports, Series 12, Nr. 422, VDI, 2000.

    Google Scholar 

  3. Livengood, J. C. and Wu, P. C., “Correlation of autoignition phenomena in internal combustion engines and rapid compression machines,” Symp. Int. Combust, 1955, 5: 347–356.

    Google Scholar 

  4. Grill, M., “Objektorientierte Prozessrechnung von Verbrennungsmotoren,” Ph.D. Thesis, University of Stuttgart, 2006.

    Google Scholar 

  5. Cai, L. and Pitsch, H., “Optimized chemical mechanism for combustion of gasoline surrogate fuels,” Combustion and Flame, 162, 2015, pp. 1623–1637.

    Google Scholar 

  6. Morgan, N., Smallbone, A., Bhave, A., Kraft, M. et al., “Mapping surrogate gasoline compositions into RON/MON space,” Combustion and Flame, 157, 2010, pp. 1122–1131.

    Google Scholar 

  7. Anderson, J. E., Kramer, U., Mueller, S. A., Wallington, T. J., “Octane Numbers of Ethanol- and Methanol-Gasoline Blends Estimated from Molar Concentrations,” Energy Fuels, 24, 2010, pp. 6576–6585.

    Google Scholar 

  8. Bargende, M., Heinle, M., Berner, H.-J., “Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations,” 13. Conference „The Working Process of the Internal Combustion Engine”, Graz, 2011, pp. 45 –63.

    Google Scholar 

  9. Grill, M., Billinger, T. and Bargende, M., “Quasi-Dimensional Modeling of Spark Ignition Engine Combustion with Variable Valve Train,” SAE Technical Paper 2006-01-1107, 2006.

    Google Scholar 

  10. Tanaka, S., Ayala, F., Keck, J. C., Heywood, J. B., “Two-stage ignition in HCCI combustion and HCCI control by fuels and additives,” Combustion and Flame, 132, 2003, pp. 219–239.

    Google Scholar 

  11. Dechaux, J.C., Delfosse, L., “The negative temperature coefficient in the C2 to C13 hydrocarbon oxidation. I. Morphological results”, Combustion and Flame, 34, 1979, pp. 161–168.

    Google Scholar 

  12. Franzke, D., “Beitrag zur Ermittlung eines Klopfkriteriums der ottomotorischen Verbrennung und zur Vorausberechnung der Klopfgrenze,” Ph.D. thesis, Technical University of Munich, 1991.

    Google Scholar 

  13. Chen, L., Li, T., Yin, T., Zheng, B., “A predictive model for knock onset in sparkignition engines with cooled EGR,” Energy Conversion and management, Vol 87, 2014, pp. 946-955.

    Google Scholar 

  14. Fandakov, A., Grill, M., Bargende, M., Kulzer, A. C., “Investigation of thermodynamic and chemical influences on knock for the working process calculation,” 17th Stuttgart international symposium, Stuttgart, 2017.

    Google Scholar 

  15. Fandakov, A., Grill, M., Bargende, M., Kulzer, A. C., “Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock,” SAE Technical Paper 2017-24-0001, 2017.

    Google Scholar 

  16. König, G., Maly, R., Bradley, D., Lau, A. et al., “Role of Exothermic Centres on Knock Initiation and Knock Damage,” SAE Technical Paper 902136, 1990, https://doi.org/10.4271/902136.

  17. Lyford-Pike, E. J., Heywood, J. B., “Thermal boundary layer thickness in the cylinder of a spark-ignition engine,” Int. J. Heat Mass Transfer, 27 (10) (1984), pp. 1873-1878.

    Google Scholar 

  18. Mansouri, S. H., Heywood, J. B., “Correlations for the viscosity and Prandtl number of hydrocarbon-air combustion products,” Combust. Sci. Technol. 23, pp. 251-256, 1980.

    Google Scholar 

  19. Steurs, K. F. H. M., “Cycle-resolved analysis and modeling of knock in a homogeneous charge spark ignition engine fueled by ethanol and iso-octane,” Ph.D. Thesis, ETH Zurich, 2014.

    Google Scholar 

  20. Burgdorf, K. and Denbratt, I., “Comparison of Cylinder Pressure Based Knock Detection Methods,” SAE Technical Paper 972932, 1997, https://doi.org/10.4271/972932.

  21. Schießl, R., Schubert, A., and Maas, U., “Temperature Fluctuations in the Unburned Mixture: Indirect Visualisation Based on LIF and Numerical Simulations,” SAE Technical Paper 2006-01-3338, 2006, https://doi.org/10.4271/2006-01-3338.

  22. Jakob, M., Pischinger, S., Adomeit, P., Brunn, A., Ewald, J.: “Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine”, SAE Technical Paper 2011-01-1284, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Fandakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fandakov, A., Bargende, M., Grill, M., Mally, M., Kulzer, A.C. (2018). A New Model for Predicting the Knock Boundary with EGR at Full Load (Ein neues Modell zur Vorhersage der Klopfgrenze bei Volllast-AGR). In: Liebl, J. (eds) Ladungswechsel im Verbrennungsmotor 2017. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-22671-8_3

Download citation

Publish with us

Policies and ethics