Advertisement

Freemium Service Business Models – Eine empirische Analyse der Akzeptanz von kostenpflichtigen Musik-Streaming-Diensten

  • Sebastian Danckwerts
  • Helena Maria Lischka
  • Peter Kenning
Chapter

Zusammenfassung

Angesichts der zunehmenden Bedeutung von Musik-Streaming ist das Ziel des vorliegenden Beitrags die empirische Analyse der Akzeptanz von kostenpflichtigen Musik-Streaming-Diensten. Basierend auf einem erweiterten Technologieakzeptanzmodell (TAM) werden dazu die Einflussfaktoren der Nutzungsintention untersucht. Zur Prüfung der aufgestellten Hypothesen wurde eine Online-Befragung durchgeführt, an der über 500 Probanden teilnahmen. Mit Hilfe einer Strukturgleichungsanalyse werden Determinanten der Nutzungsintention von kostenpflichtigen Musik-Streaming-Diensten identifiziert, aus denen sich Handlungsempfehlungen für das Dienstleistungsmanagement sowie für die weiterführende Forschung ergeben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Ajzen, I. (1991): The Theory of Planned Behavior, in: Organizational Behavior and Human Decision Processes, Vol. 50, No. 2, S. 179-211.Google Scholar
  2. Ajzen, I./Fishbein, M. (1980): Understanding Attitudes and Predicting Social Behavior, Englewood Cliffs.Google Scholar
  3. Alba, J. W./Hutchinson, J. W. (1987): Dimensions of Consumer Expertise, in: Journal of Consumer Research, Vol. 13, No. 4, S. 411-454.Google Scholar
  4. Anderson, C. (2009): Free – The Future of a Radical Price, London.Google Scholar
  5. Anderson, J. C./Gerbing, D. W. (1988): Structural Equation Modeling in Practice: A Re-view and Recommended Two-Step Approach, in: Psychological Bulletin, Vol. 103, No. 3, S. 411-423.Google Scholar
  6. Apple (2017): Spotify hält Apple Music auf Abstand, in: Statista (2017), https://de.statista.com/infografik/8410/spotify-und-apple-music-abonnenten/ (Zugriff am 12.06.2017).
  7. Bagozzi, R. P. (1981): Attitudes, intentions, and behavior: A test of some key hypotheses, in: Journal of Personality and Social Psychology, Vol. 41, No. 4, S. 607-627.Google Scholar
  8. Bagozzi, R. P./Yi, Y. (1988): On the evaluation of structural equation models, in: Journal of the Academy of Marketing Science, Vol. 16, No. 1, S. 74-94.Google Scholar
  9. Belk, R. (2014): You are what you can access: Sharing and collaborative consumption online, in: Journal of Business Research, Vol. 67, No. 8, S. 1595-1600.Google Scholar
  10. Bentler, P. M./Speckart, G. (1979): Models of Attitude-Behavior Relations, in: Psychological Review, Vol. 86, No. 5, S. 452-464.Google Scholar
  11. Byrne, B. M. (2001): Structural equation modeling: Perspectives on the present and the future, in: International Journal of Testing, Vol. 1, No. 3/4, S. 327-334.Google Scholar
  12. Cesareo, L./Pastore, A. (2014): Consumers’ attitude and behavior towards online music piracy and subscription-based services, in: Journal of Consumer Marketing, Vol. 31, No. 6/7, S. 515-525.Google Scholar
  13. Cha, J. (2014): Usage of video sharing websites: Drivers and barriers, in: Telematics and Informatics, Vol. 31, No. 1, S. 16-26.Google Scholar
  14. Cheong, J. H./Park, M.-C. (2005): Mobile internet acceptance in Korea, in: Internet Research, Vol. 15, No. 2, S. 125-140.Google Scholar
  15. Chu, C.-W./Lu, H.-P. (2007): Factors influencing online music purchase intention in Taiwan: An empirical study based on the value-intention framework, in: Internet Research, Vol. 17, No. 2, S. 139-155.Google Scholar
  16. Davis, F. D. (1989): Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, in: MIS Quarterly, Vol. 13, No. 3, S. 319-340.Google Scholar
  17. Davis, F. D./Bagozzi, R. P./Warshaw, P. R. (1989): User Acceptance of Computer Technology: A Comparison of Two Theoretical Models, in: Management Science, Vol. 35, No. 8, S. 982-1003.Google Scholar
  18. Deezer (2017): Instagram – Deezer, https://www.instagram.com/deezer/ (Zugriff am 24.08.2017).
  19. Dörr, J./Benlian, A./Vetter, J./Hess, T. (2010): Pricing of Content Services – An Empirical Investigation of Music as a Service, in: Sustainable e-business management, Vol. 58, No. 1, S. 13-24.Google Scholar
  20. Dörr, J./Wagner, T. M./Benlian, A./Hess, T. (2013): Music as a Service als Alternative für Musikpiraten? Eine empirische Untersuchung zur Nutzungsintention von Streaming-Services für Musik, in: Wirtschaftsinformatik, 55. Jg., Nr. 6, S. 377-393.Google Scholar
  21. Falk, T./Schepers, J./Hammerschmidt, M./Bauer, H. H. (2007): Identifying Cross-Channel Dissynergies for Multichannel Service Providers, in: Journal of Service Research, Vol. 10, No. 2, S. 143-160.Google Scholar
  22. Fishbein, M./Ajzen, I. (1975): Belief, Attitude, Intention, and Behavior. An Introduction to Theory and Research, Reading.Google Scholar
  23. Fornell, C./Larcker, D. F. (1981): Evaluating Structural Equation Models with Unobservable Variables and Measurement Error, in: Journal of Marketing Research, Vol. 18, No. 1, S. 39-50.Google Scholar
  24. Freestone, O./Mitchell, V.-W. (2004): Generation Y Attitudes towards E-Ethics and Internet-Related Misbehaviours, in: Journal of Business Ethics, Vol. 54, No. 2, S. 121-128.Google Scholar
  25. Gefen, D./Karahanna, E./Straub, D. W. (2003): Trust and TAM in Online Shopping: An Integrated Model, in: MIS Quarterly, Vol. 27, No. 1, S. 51-90.Google Scholar
  26. Hampton-Sosa, W. (2017): The impact of creativity and community facilitation on music streaming adoption and digital piracy, in: Computers in Human Behavior, Vol. 69, No. 1, S. 444-453.Google Scholar
  27. Homburg, C./Giering, A. (2001): Personal Characteristics as Moderators of the Relationship Between Customer Satisfaction and Loyalty – An Empirical Analysis, in: Psychology & Marketing, Vol. 18, No. 1, S. 43-66.Google Scholar
  28. IFPI (2015): IFPI Digital Music Report 2015, http://www.ifpi.org/downloads/Digital-Music-Report-2015.pdf (Zugriff am 30.05.2017).
  29. IFPI (2017a): Global Music Report 2017, http://www.ifpi.org/downloads/GMR2017.pdf (Zugriff am 30.05.2017).
  30. IFPI (2017b): Geschätzte Anzahl der zahlenden Abonnenten, Paid Accounts bei Musikstreaming-Abonnementdiensten in den Jahren 2010 bis 2016, in: Statista (2017), https://de.statista.com/statistik/daten/studie/297786/umfrage/abonnenten-von-musikstreaming-diensten-weltweit/ (Zugriff am 12.06.2017).
  31. Im, S./Bayus, B. L./Mason, C. H. (2003): An Empirical Study of Innate Consumer Innovativeness, Personal Characteristics, and New-Product Adoption Behavior, in: Journal of the Academy of Marketing Science, Vol. 31, No. 1, S. 61-73.Google Scholar
  32. Järveläinen, J. (2007): Online Purchase Intentions: An Empirical Testing of a Multiple-Theory Model, in: Journal of organizational computing and electronic commerce, Vol. 17, No. 1, S. 53-74.Google Scholar
  33. Jeong, G./Lee, J. (2010): Estimating consumer preferences for online music services, in: Applied Economics, Vol. 42, No. 30, S. 3885-3893.Google Scholar
  34. Jung, Y./Perez-Mira, B./Wiley-Patton, S. (2009): Consumer adoption of mobile TV: Examining psychological flow and media content, in: Computers in Human Behavior, Vol. 25, No. 1, S. 123-129.Google Scholar
  35. Jussila, I./Tarkiainen, A./Sarstedt, M./Hair, J. F. (2015): Individual Psychological Own-ership: Concepts, Evidence, and Implications for Research in Marketing, in: Journal of Marketing Theory and Practice, Vol. 23, No. 2, S. 121-139.Google Scholar
  36. Karimi, S./Papamichail, K. N./Holland, C. P. (2015): The effect of prior knowledge and decision-making style on the online purchase decision-making process: A typology of consumer shopping behaviour, in: Decision Support Systems, Vol. 77, No. 1, S. 137-147.Google Scholar
  37. Kim, H.-W./Chan, H. C./Gupta, S. (2007): Value-based Adoption of Mobile Internet: An empirical investigation, in: Decision Support Systems, Vol. 43, No. 1, S. 111-126.Google Scholar
  38. Kumar, V. (2014): Making “Freemium” Work, in: Harvard Business Review, Vol. 92, No. 5, S. 27-29.Google Scholar
  39. Kumar, A./Lim, H. (2008): Age differences in mobile service perceptions: comparison of Generation Y and baby boomers, in: Journal of Services Marketing, Vol. 22, No. 7, S. 568-577.Google Scholar
  40. Kunze, O./Mai, L.-W. (2007): Consumer adoption of online music services: The influence of perceived risks and risk-relief strategies, in: International Journal of Retail & Distribution Management, Vol. 35, No. 11, S. 862-877.Google Scholar
  41. Kwong, S. W./Park, J. (2008): Digital music services: consumer intention and adoption, in: The Service Industries Journal, Vol. 28, No. 10, S. 1463-1481.Google Scholar
  42. Lee, H.-J./Cho, H. J./Xu, W./Fairhurst, A. (2010): The influence of consumer traits and demographics on intention to use retail self-service checkouts, in: Marketing Intelligence & Planning, Vol. 28, No. 1, S. 46-58.Google Scholar
  43. Lewis, T. R./Sappington, D. E. M. (1994): Supplying Information to Facilitate Price Discrimination, Vol. 35, No. 2, S. 309-327.Google Scholar
  44. Liao, C.-H./Tsou, C.-W./Shu, Y.-C. (2008): The Roles of Perceived Enjoyment and Price Perception in Determining Acceptance of Multimedia-on-Demand, in: International Journal of Business and Information, Vol. 3, No. 1, S. 27-52.Google Scholar
  45. Lin, L.-Y./Chen, C.-S. (2006): The influence of the country-of-origin image, product knowledge and product involvement on consumer purchase decisions: an empirical study of insurance and catering services in Taiwan, in: Journal of Consumer Market-ing, Vol. 23, No. 5, S. 248-265.Google Scholar
  46. Lin, T.-C./Hsu, J. S.-C./Chen, H.-C. (2013): Customer Willingness to pay for online music: The role of free mentality, in: Journal of Electronic Commerce Research, Vol. 14, No. 4, S. 315-333.Google Scholar
  47. Liu, I.-F./Chen, M. C./Sun, Y. S./Wible, D./Kuo, C.-H. (2010): Extending the TAM model to explore the factors that affect Intention to Use an Online Learning Community, in: Computers & Education, Vol. 54, No. 2, S. 600-610.Google Scholar
  48. Lu, J./Yu, C.-S./Liu, C./Yao, J. E. (2003): Technology acceptance model for wireless Internet, in: Internet Research, Vol. 13, No. 3, S. 206-222.Google Scholar
  49. Morris, M. G./Venkatesh, V. (2000): Age Differences in Technology Adoption Decisions: Implications for a Changing Work Force, in: Personnel Psychology, Vol. 53, No. 2, S. 375-403.Google Scholar
  50. Nunnally, J. C. (1978): Psychometric Theory, 2. Aufl., New York.Google Scholar
  51. Oestreicher-Singer, G./Zalmanson, L. (2013): Content or Community? A Digital Business Strategy for Content Providers in the Social Age, in: MIS Quarterly, Vol. 37, No. 2, S. 591-616.Google Scholar
  52. Pierce, J. L./Kostova, T./Dirks, K. T. (2001): Toward a Theory of Psychological Ownership in Organizations, in: The Academy of Management Review, Vol. 26, No. 2, S. 298-310.Google Scholar
  53. Pierce, J. L./Kostova, T./Dirks, K. T. (2003): The State of Psychological Ownership: Integrating and Extending a Century of Research, in: Review of General Psychology, Vol. 7, No. 1, S. 84-107.Google Scholar
  54. Polites, G. L./Karahanna, E. (2012): Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance, in: MIS Quarterly, Vol. 36, No. 1, S. 21-42.Google Scholar
  55. Rao, A. R./Sieben, W. A. (1992): The Effect of Prior Knowledge on Price Acceptability and the Type of Information Examined, in: Journal of Consumer Research, Vol. 19, No. 2, S. 256-270.Google Scholar
  56. Rogers, E. M. (1983): Diffusion of Innovations, 3. Aufl., New York.Google Scholar
  57. Samuelson, W./Zeckhauser, R. (1988): Status quo bias in decision making, in: Journal of Risk and Uncertainty, Vol. 1, No. 1, S. 7-59.Google Scholar
  58. Sim, J.-J./Tan, G. W.-H/Wong, J. C. J./Ooi, K.-B./Hew, T.-S. (2014): Understanding and predicting the motivators of mobile music acceptance – A multi-stage MRA-artificial neural network approach, in: Telematics and Informatics, Vol. 31, No. 4, S. 569-584.Google Scholar
  59. Spotify (2016): Jan Böhmermann und Olli Schulz starten „Fest & Flauschig“, https://www.press.spotify.com/de/2016/05/13/jan-bohmermann-und-olli-schulz-starten-fest-flauschig/ (Zugriff am 24.08.2017).
  60. Spotify (2017a): Anzahl der aktiven Spotify-Nutzer weltweit von Juli 2012 bis Juni 2017 (in Millionen), in: Statista (2017), https://www.de.statista.com/statistik/daten/studie/368928/umfrage/monatlich-aktive-nutzer-von-spotify-weltweit/ (Zugriff am 23.08.2017).
  61. Spotify (2017b): Anzahl der Paid Subscribers von Spotify von März 2011 bis Juli 2017 (in Millionen), https://www.de.statista.com/statistik/daten/studie/297138/umfrage/anzahl-der-zahlenden-abonnenten-von-spotify/ (Zugriff am 23.08.2017).
  62. Taylor, S./Todd, P.A. (1995): Assessing IT Usage: The Role of Prior Experience, in: MIS Quarterly, Vol. 19, No. 4, S. 561-570.Google Scholar
  63. Turban, E./King, D./Viehland, D./Lee, J. (2006): Electronic Commerce 2006. A Mana-gerial Perspective, 1. Aufl., Upper Saddle River.Google Scholar
  64. Venkatesh, V. (2000): Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model, in: Information Systems Research, Vol. 11, No. 4, S. 342-365.Google Scholar
  65. Venkatesh, V./Brown, S. A. (2001): A Longitudinal Investigation of Personal Computers in Homes: Adoption Determinants and Emerging Challenges, in: MIS Quarterly, Vol. 25, No. 1, S. 71-102.Google Scholar
  66. Venkatesh, V./Davis, F.D. (1996): A Model of the Antecedents of Perceived Ease of Use: Development and Test, in: Decision Sciences, Vol. 27, No. 3, S. 451-481.Google Scholar
  67. Venkatesh, V./Davis, F. D. (2000): A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, in: Management Science, Vol. 46, No. 2, S. 186-204.Google Scholar
  68. Venkatesh, V./Morris, M. G./Davis, G. B./Davis, F. D. (2003): User Acceptance of Information Technology: Toward a Unified View, in: MIS Quarterly, Vol. 27, No. 3, S. 425-478.Google Scholar
  69. Venkatesh, V./Thong, J. Y. L./Xu, X. (2012): Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology, in: MIS Quarterly, Vol. 36, No. 1, S. 157-178.Google Scholar
  70. Voss, G. B./Parasuraman, A./Grewal, D. (1998): The roles of price, performance, and expectations in determining satisfaction in service exchanges, in: Journal of Marketing, Vol. 62, No. 4, S. 46-61.Google Scholar
  71. Wagner, T. M./Benlian, A./Hess, T. (2014): Converting freemium customers from free to premium – the role of perceived premium fit in the case of music as a service, in: Electronic Markets, Vol. 24, No. 4, S. 259-268.Google Scholar
  72. Wang, Y.-S. (2008): Assessing e-commerce systems success: a respecification and validation of the DeLone and McLean model of IS success, in: Information Systems Journal, Vol. 18, No. 5, S. 529-557.Google Scholar
  73. Wang, Y.-S./Yeh, C.-H./Liao, Y.-W. (2013): What drives purchase intention in the context of online content services? The moderating role of ethical selfefficacy for online piracy, in: International Journal of Information Management, Vol. 33, No. 1, S. 199-208.Google Scholar
  74. Wei, T. T./Marthandan, G./Chong, A. Y.-L./Ooi, K.-B./Arumugam, S. (2009): What drives Malaysian m-commerce adoption? An empirical analysis, in: Industrial Management & Data Systems, Vol. 109, No. 3, S. 370-388.Google Scholar
  75. Wlömert, N./Papies, D. (2016): On-demand streaming services and music industry revenues – Insights from Spotify’s market entry, in: International Journal of Research in Marketing, Vol. 33, No. 2, S. 314-327.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Sebastian Danckwerts
    • 1
  • Helena Maria Lischka
    • 1
  • Peter Kenning
    • 1
  1. 1.Lehrstuhl für BWL insbesondere MarketingUniversität DüsseldorfDüsseldorfDeutschland

Personalised recommendations