Skip to main content

Elektrolyse von Wasser

  • Chapter
  • First Online:
Elektrochemische Speicher
  • 27k Accesses

Zusammenfassung

Wasserstoff gilt als langfristiger chemischer Energieträger, zumal die Elektrolyse von Wasser die Nutzung von Windenergie, Solarstrom, Wasser- und Gezeitenkraft erlaubt. Das Kapitel fasst den Stand der Technik zur elektrolytischen Wasserstofferzeugung zusammen: Technologien, Materialien, Zelldesign, Leistungsdaten und Marktübersicht der alkalischen, SPE- und Festoxid-Elektrolyse,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Grundlagen

  1. Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications, 2. Aufl. Wiley, New York (2001)

    Google Scholar 

  2. Beck, F., Goldacker, H., Kreysa, G., Vogt, H., Wendt, H.: Electrochemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. A 9, S. 183–254 (1987)

    Google Scholar 

  3. Carmo, M., Fritz, D.L., Mergel, J., Stolten, J.: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013)

    Google Scholar 

  4. Dunsch, L.: Geschichte der Elektrochemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1985)

    Google Scholar 

  5. Hamann, C.H., Vielstich, W.: Elektrochemie, 4. Aufl. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  6. Hund, F.: Geschichte der physikalischen Begriffe. Spektrum Akademischer Verlag (1996)

    Google Scholar 

  7. Kortüm, G.: Lehrbuch der Elektrochemie, 4. Aufl. Verlag Chemie, Weinheim (1970), antiquarisch

    Google Scholar 

  8. Kurzweil, P.: Chemie, 10. Aufl., Kap. 9 „Elektrochemie“. Springer Vieweg, Wiesbaden (2015)

    Google Scholar 

  9. Kurzweil, P.: History: Electrochemistry. In: Garche, J. et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 3, S. 533–554. Elsevier, Amsterdam (2009)

    Google Scholar 

  10. Kurzweil, P., Fischle, H.-J.: A new monitoring method for electrochemical aggregates by impedance spectroscopy. J. Power Sources 127, 331–340 (2004)

    Google Scholar 

  11. Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012)

    Google Scholar 

  12. Leung, M.K.H., Ni, M., Leung, D.Y.C.: Solid oxide electrolyzer cells. In: Sherif, S.A. et al. (Hrsg.) Handbook of Hydrogen Energy, Kap. 7, S. 179–211. CRC Press, Boca Raton, USA (2014)

    Google Scholar 

  13. Millet, P., Grigoriev, S.: Water electrolysis technologies. In: Gandia, L.M., Arzamendi, G., Dieguez, P.M. (Hrsg.) Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, S. 19–42. Elsevier, Amsterdam (2013)

    Google Scholar 

  14. Smolinka, T., Rau, S., Hebling, C.: Polymer electrolyte membrane (PEM) water electrolysis. In: Stolten, D. (Hrsg.) Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications, S. 271–288. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  15. Smolinka, T., Günther, M., Garche, J.: NOW-Studie: Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, Kurzfassung des Abschlussberichts. Fraunhofer ISE, FCBAT, http://www.hs-ansbach.de/uploads/tx_nxlinks/NOW-Studie-Wasserelektrolyse-2011.pdf (2011), Zugriff: November 2015

  16. Smolinka, T., Ojong, E.T., Garche, J.: Hydrogen production from renewable energies – electrolyzer technologiese. In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 8. Elsevier, Amsterdam (2015)

    Google Scholar 

  17. Zeng, K., Zhang, D.: Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010)

    Google Scholar 

Elektrolyte

  1. (a) Allcock, H.R., Sunderland, N.J., Ravikiran, R., Nelson, J.M.: Polyphosphazenes with novel architectures: influence on physical properties and behavior as solid polymer electrolytes. Macromolecules 31(23), 8026–8035 (1998) (b) Jankowsky, S., Hiller, M.M., Wiemhöfer, H.-D.: Preparation and electrochemical performance of polyphosphazene based salt-in-polymer electrolyte membranes for lithium ion batteries. J. Power Sources 253, 256–262 (2014)

    Google Scholar 

  2. Allebrod, F., et al.: Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. Int. J. Hydrogen Energy 37, 16505–16514 (2012)

    Google Scholar 

  3. Crow, D.R.: Principles and applications of electrochemistry, 4. Aufl., Chapman & Hall, London (1994)

    Google Scholar 

  4. Gilliam, R.J., et al.: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy 32, 359–364 (2007)

    Google Scholar 

  5. Goni-Urtiaga, A., Presvytes, D., Scott, K.: Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review. Int. J. Hyrogen Energy 37, 3358–3372 (2012)

    Google Scholar 

  6. Heise, M., Rasche, B., Isaeva, A., Baranov, A., Ruck, M., et al.: A metallic room-temperature oxide ion conductor. Angew. Chemie Int. Ed. 53(28), 7344–7348 (2014)

    Google Scholar 

  7. Hine, F., Murakami, K.: Bubble effects on the solution IR drop in a vertical electrolyzer under free and force convection. J. Electrochem. Soc. 127, 292–297 (1980)

    Google Scholar 

  8. (a) Ito, H., et al.: Properties of Nafion membranes under PEM water electrolysis conditions. Int. J. Hydrogen Energy 36, 10527–10540 (2011) (b) Ito, H., et al.: Experimental study on porous current collectors of PEM electrolyzers. Int. J. Hydrogen Energy 37, 7418–7428 (2012)

    Google Scholar 

  9. Ivers-Tiffée, E.: Electrolytes: Solid: Oxygen Ion, Bd. 2, S. 181–187; Solid: Mixed ionic-electronic conductors, Bd. 2, S. 174–180. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam (2009)

    Google Scholar 

  10. Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003)

    Google Scholar 

  11. Macmullin, R.B., Muccini, G.A.: Characteristics of porous beds and structures. AlChE J. 2, 393–403 (1956)

    Google Scholar 

  12. Merle, G., Wessling, M., Nijmeijer, K.: Anion exchange membranes for alkaline fuel cells: a review. J. Membrane Sci. 377, 1–35 (2011)

    Google Scholar 

  13. Mittelsteadt, C.K., Staser, J.A.: Electrolyzer membranes. In: Matyjaszewski, K., Mölller, M. (Hrsg.) Polymer Science: A Comprehensive Reference, S. 849–871. Elsevier, Amsterdam (2012)

    Google Scholar 

  14. Moseley, P.: Electrolyte, solid: Sodium ions. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 196–214. Elsevier, Amsterdam (2009)

    Google Scholar 

  15. Noby, T.: The promise of protonics. Nature 410, 877–878 (2001)

    Google Scholar 

  16. Ohlrogge, K., Ebert, K.: Membranen: Grundlagen, Verfahren und Industrielle Anwendungen. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  17. Péra, M.-C., Hissel, D., Gualous, H., Turpin, Ch.: Electrochemical Components. Wiley, Hoboken (2013)

    Google Scholar 

  18. Spacil, H.S., Tedmon, C.S.: Electrochemical dissociation of water vapor in solid oxide electrolyte cells. I. Thermodynamics and cell characteristics. J. Electrochem. Soc. 116, 1618 (1969)

    Google Scholar 

Elektrodenmaterialien

  1. Chen, K., Ai, N., Jiang, S.P.: Performance and stability of (La, Sr)MnO\({}_{\mathrm{3}}\)-Y\({}_{\mathrm{2}}\)O\({}_{\mathrm{3}}\)-\(\mathrm{ZrO_{2}}\) composite oxygen electrodes under solid oxide electrolysis cell operation. Int. J. Hydrogen Energy 37, 10517–10525 (2012)

    Google Scholar 

  2. Cruz, J.C., et al.: Preparation and characterization of \(\mathrm{RuO_{2}}\) catalysts for oxygen evolution in a solid polymer electrolyte. J. Electrochem. Sci. 6, 6607–6619 (2011)

    Google Scholar 

  3. Dasari, H.P., et al.: Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. Int. J. Hydrogen Energy 240, 721–728 (2013)

    Google Scholar 

  4. Fominykh, K., Feckl, J.M., Sicklinger, J., Döblinger, M., Böcklein, S., et al.: Ultrasmall dispersible crystalline Nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 24(21), 3123–3129 (2014)

    Google Scholar 

  5. Gan, Y., et al.: Composite cathode La\({}_{\mathrm{0.4}}\)Sr\({}_{\mathrm{0.4}}\)TiO\({}_{{3-\updelta}}\)Ce\({}_{\mathrm{0.8}}\)Sm\({}_{\mathrm{0.2}}\)O\({}_{{2-\updelta}}\) impregnated with Ni for high temperature steam electrolysis. J. Power Sources 245, 245–255 (2014)

    Google Scholar 

  6. Grigoriev, S.A., et al.: Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrogen Energy 34, 4968–4973 (2009)

    Google Scholar 

  7. Kurzweil, P.: Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes. J. Power Sources 190(1), 189–200 (2009)

    Google Scholar 

  8. Mori, M., et al.: Thermal expansion of Nickel-Zirconia anodes in solid oxide fuel cells during fabrication and operation. J. Electrochem. Soc. 145(4), 1374–1381 (1998)

    Google Scholar 

  9. Nikiforov, A.V., et al.: WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysis. Int. J. Hydrogen Energy 37, 18591–18597 (2012)

    Google Scholar 

  10. Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions. Cebelcor, Brüssel (1965)

    Google Scholar 

  11. Rosalbino, F.: Electrocatalytic activity of crystalline Ni-Co-M (M \(=\) Cr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environment. Int. J. Hydrogen Energy 38, 10170–10177 (2013)

    Google Scholar 

  12. (a) Schmid, O., Kurzweil, P., Schmid, B., Tillmetz, W.: Elektrode für elektrochemische Energiewandler. Insbesondere: \(\mathrm{IrO_{2}}\cdot x\mathrm{H_{2}O}\) als Elektrodenmaterial. Dornier GmbH, DE 19647534 A1 (1998), Patent verfügbar über: http://worldwide.espacenet.com (b) Kurzweil, P., Schmid, O., Schmid, B.: DE 4313474 C2 (1993)

  13. Trasatti, S.: Electrodes of conductive metallic oxides, Part A. Elsevier, Amsterdam (1980)

    Google Scholar 

  14. Trasatti, S.: Hydrogen evolution. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 41–48. Elsevier, Amsterdam (2009)

    Google Scholar 

  15. Trasatti, S.: Oxygen evolution. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 49–55. Elsevier, Amsterdam (2009)

    Google Scholar 

  16. Wu, K., Scott, K.: Cu\({}_{x}\)Co\({}_{3-x}\)O\({}_{4}\) (\(0\leq x<1\)) nanoparticles for oxygen evolution reaction in high performance alkaline exchange membrane water electrolysers. J. Mater. Chem. 21, 12344–12351 (2011)

    Google Scholar 

  17. Wu, L., et al.: Characterisation of porous Ni\({}_{\mathrm{3}}\)Al electrodes for hydrogen evolution in strong alkali solution. Int. Mater. Chem, Phys. 141, 553–561 (2013)

    Google Scholar 

  18. Xu, J., Liu, G., Li, J., Wang, X.: The electrocatalytic properties of an \(\mathrm{IrO_{2}}/\mathrm{SnO_{2}}\) catalyst using \(\mathrm{SnO_{2}}\) as an assisting reagent for the oxygen evolution reaction. Electrochimica Acta 59, 105–112 (2012)

    Google Scholar 

  19. Xu, S,. et al.: Composite cathode based on Fe-loaded LSCM for Steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J. Power Sources 239, 332–340 (2013)

    Google Scholar 

  20. Yang, C.: High performance solid oxide electrolysis cells using Pr\({}_{\mathrm{0.8}}\)Sr\({}_{\mathrm{1.2}}\)(Co,Fe)\({}_{\mathrm{0.8}}\) Nb\({}_{\mathrm{0.2}}\)O\({}_{{4+\updelta}}\)Co-Fe alloy hydrogen electrodes. Int. J. Hydrogen Energy 38, 11202–11208 (2013)

    Google Scholar 

Anwendungen

  1. Arico, A.S., et al.: Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 43, 107–117 (2013)

    Google Scholar 

  2. Davenport, R.J., Schubert, F.H., Grigger, D.J.: Space water electrolysis: space station through advanced missions. J. Power Sources 36, 235–250 (1991)

    Google Scholar 

  3. Dönitz, W., Erdle, E.: High-temperature electrolysis of water vapor status of development and perspectives for application. Int. J. Hydrogen Energy 10(5), 291–295 (1985)

    Google Scholar 

  4. (a) Benz, U., Preiss, H., Schmid, O.: FAE-Elektrolyse. Dornier post No. 2 (1992) (b) Funke, H., Tan, G., Friedrichs, D., Jung, K.: \(\mathrm{O_{2}}\) generation: A key system for extended manned space missions. Sixth European Symposium on Space Environmental Control Systems, SP-400, S. 767. Noordwijk, The Netherlands (1997) (c) Knorr, W., Raatschen, W., Tan, G., Witt, J.: The FAE electrolyser flight experiment FAVORITE. SAE Technical Paper 2003-01-2629 (2003), doi:10.4271/2003-01-2629 (d) Knorr, W., Tan, G., Witt, J., Houdou, B.: The FAE electrolyser flight experiment FAVORITE: Final design and pre-flight ground test results. SAE Technical Paper 2005-01-2809 (2005), doi:10.4271/2005-01-2809 (e) Bockstahler, K., Lucas, J., Witt, J., Laurini, D.: Design status of the advanced closed loop system ACLS for accommodation on the ISS. 41st International Conference on Environmental Systems, July 2011 (f) Schmid, O., Kurzweil, P.: Verfahren und Vorrichtung zur Elektrolyse. EP0764727 B1 (1995)

    Google Scholar 

  5. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Google Scholar 

  6. Haryu, E., et al.: Mechanical structure and performance evaluation of high differential pressure water electrolysis cell. Honda R&D Tech. Rev. 23(2) (2011)

    Google Scholar 

  7. Hauch, A., et al.: Highly efficient high temperature electrolysis. J. Mater. Chem. 18, 2331–2340 (2008)

    Google Scholar 

  8. (a) Laguna-Bercero, M.A., et al.: Steam electrolysis using a microtubular solid oxid fuel cell. J. Electrochem. Soc. 157, B852–B855 (2010) (b) Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012)

    Google Scholar 

  9. Matshushima, H., et al.: Water electrolysis under microgravity Part 1. Experimental technique. Electrochimica Acta 48, 4119–4125 (2003)

    Google Scholar 

  10. Marini, S. et al.: Advanced alkaline electrolysis. Electrochimica Acta 82, 384–931 (2012)

    Google Scholar 

  11. Mawdsley, J.R., et al.: Post-test evaluation of oxygen electrodes from solid electrolysis stacks. Int. J. Hydrogen Energy 34, 4198–4207 (2009)

    Google Scholar 

  12. Mittelsteadt, C., Norman, T., Rich, M., Willey, J.: PEM electrolyzers and PEM regenerative fuel cells industrial view (Giner Inc. USA). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 11. Elsevier, Amsterdam (2015)

    Google Scholar 

  13. Ni, M., Leung, M.K.H., Leung, Y.C.: Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy 33, 2337–2354 (2008)

    Google Scholar 

  14. Millet, P.: Water electrolysis for hydrogen generation. In: Liu, R.-S., et al. (Hrsg.) Electrochemical Technologies for Energy Storage and Conversion, Bd. 2, S. 383–423. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  15. (a) MTU Deutsche Aerospace: MTU-Energiewandlungsanlagen: Der Hochleistungselektrolyseur, Firmenprospekt, München (b) Huppmann, G.: Das MTU Direkt-Brennstoffzellen Hot-Module (MCFC). In: Ledjeff-Hey, K., Mahlendorf, F., Roes, J. (Hrsg.) Brennstoffzellen, Kap. 9, S. 170–186. C.F. Müller Verlag, Heidelberg (2001) (c) DaimlerChrysler: Hightech Report, S. 34–35 (2000) (d) Brand, R.-A., Hofmann, H., Hildebrandt, J.: Zellaufbau für Elektrolyseure und Brennstoffzellen. DE 4208057 A1 (1993) Hofmann, H., Wendt, H.: Verfahren zur Herstellung eines Verbundes aus einer Cermet-Schicht und einer porösen Metallschicht auf einer oder beiden Seiten der Cermet-Schicht als Diaphragma mit Elektrode(n), EP 0297315 A2 (1989)

    Google Scholar 

  16. Naterer, G.F., et al.: Progress of international hydrogen production network for the thermochemical Cu-Cl cycle. Int. J. Hydrogen Energy 38, 740–759 (2013)

    Google Scholar 

  17. Nie, J., Chen, Y.: Numerical modeling of three-dimensional two phase gas-liquid flow in the flow field plate of a PEM electrolysis cell. Int. J. Hydrogen Energy 35, 3183–3197 (2010)

    Google Scholar 

  18. Petipas, F., et al.: Transient operation of a solid oxide electrolysis cell. Int. J. Hydrogen Energy 38(7), 2957–2964 (2013)

    Google Scholar 

  19. Tietz, F., et al.: Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power Sources 223, 129–135 (2013)

    Google Scholar 

  20. Wang, J.-T., et al.: Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment. Int. J. Hydrogen Energy 37, 12069–12073 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurzweil, P. (2018). Elektrolyse von Wasser. In: Elektrochemische Speicher. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-21829-4_7

Download citation

Publish with us

Policies and ethics