Skip to main content

Lithiumionen-Batterien

  • Chapter
  • First Online:
Elektrochemische Speicher
  • 28k Accesses

Zusammenfassung

Lithiumbatterien gelten als Stand der Technik für vielfältige portable Anwendungen bis hin zu Elektroantrieben. Wiederaufladbare Lithiumionen-Akkumulatoren, engl. secondary batteries, unterscheiden sich von den nicht wiederverwendbaren Primärbatterien. Dennoch wird Begriff „Lithiumbatterie“ für Akkumulatoren gebraucht. Das Kapitel beleuchtet den Stand der Technik von den heutigen Materialien, Technologien und Herstellverfahren bis zur jüngsten Forschung. Betriebsverhalten, Alterung, messtechnische Überwachung und Modellierung von Lithiumionen-Batterien wird eingehend betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Allgemeine Literatur

  1. Bockris, J.O.M., Conway, B.E., Yeager, E., White, R.E. (Hrsg.): Comprehensive treatise of electrochemistry, Bd. 3: Electrochemical energy conversion and storage (1981). Nachdruck: Springer, Berlin (2013)

    Google Scholar 

  2. Daniel, C., Besenhard, J.O. (Hrsg.): Handbook of Battery Materials. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  3. Graf, Ch.: Kathodenmaterialien für Lithium-Ionen-Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 4, S. 31–44. Springer, Berlin (2013)

    Google Scholar 

  4. Huggins, A.R.: Advanced batteries – materials science aspects. Springer, Berlin (2009)

    Google Scholar 

  5. Kinoshita, K.: Carbon, electrochemical and physicochemical properties. Wiley, New York (1988)

    Google Scholar 

  6. Kurzweil, P.: Lithium battery energy storage: state of the art including lithium-air and lithium-sulfur systems. In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical energy storage for renewable sources and grid balancing, Kap. 16, S. 269–307. Elsevier, Amsterdam (2015)

    Google Scholar 

  7. Kurzweil, P., Brandt, K.: Overview: Lithium rechargeable systems. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 1–26. Elsevier, Amsterdam (2009)

    Google Scholar 

  8. Kurzweil, P.: Chemie, Kap. 9: Elektrochemie, 10. Aufl. Springer Vieweg, Wiesbaden (2015)

    Google Scholar 

  9. Linden, D., Reddy, T.B. (Hrsg.): Handbook of Batteries. McGraw-Hill, New York (2001)

    Google Scholar 

  10. Ohno, H.: Ionic liquids. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 153–159. Elsevier, Amsterdam (2009)

    Google Scholar 

  11. Park, J.-K.: Principles and Applications of Lithium Secondary Batteries. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  12. Peukert, W.: Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotechn. Z. (ETZ) 18, 287–288 (1897)

    Google Scholar 

  13. Ragone, D.: Review of battery systems for electrically powered vehicles. SAE Technical Paper 680453 (1968). doi:10.4271/680453. http://papers.sae.org/680453/

  14. Salomon, M.: Electrolytes I. In: Garche, J., Dyer, C., Moseley, P., Ogumi, Z., Rand, D., Scrosati, B. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 2, S. 134–139. Elsevier, Amsterdam (2009)

    Google Scholar 

  15. Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013)

    Google Scholar 

  16. Wurm, C., Öttinger, O., Wittkämper, S., Zauter, R., Vuorilehto, K.: Anodenmaterialien für Lithium-Ionen-Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 5, S. 45–60. Springer, Berlin (2013)

    Google Scholar 

Lithiumionen-Batterien

  1. Appetecchi, G.B., Croce, F., Scrosati, B.: Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta 40(8), 991–997 (1995)

    Google Scholar 

  2. Balakrishnan, P.G., Ramesh, R., Prem Kumar, T.: Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006)

    Google Scholar 

  3. Balbuena, P.B., Wang, Y.X. (Hrsg.): Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, London (2004)

    Google Scholar 

  4. Barpanda, P., Nishimura, S.: High-voltage pyrophosphate cathodes. Adv. Energy Mater. 2(7), 841–859 (2012)

    Google Scholar 

  5. Berger, R.: Battery material cost study and battery value chain study (2011) www.rolandberger.com/media/pdf/Roland_Berger_The_Li_Ion_Battery_Value_Chain_20110801.pdf, www.rolandberger.de/media/pdf/Roland_Berger_Li_Ion_Batteries_Bubble_Bursts_20121019.pdf, Zugriff: November 2015

  6. Braun, M., Büdenbender, K., Magnor, D., Jossen, A.: Photovoltaic self-consumption in Germany using lithium-ion storage to increase self-consumed photovoltaic energy, http://publica.fraunhofer.de/documents/N-129024.html, Zugriff: November 2015

  7. Chikkannanavar, S.B., Bernardi, D.M., Liu, L.: A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91–100 (2014)

    Google Scholar 

  8. Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270(5236), 590–598 (1995)

    Google Scholar 

  9. Dorn, R., Schwartz, R., Steurich, B.: Batteriemanagementsystem. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 14, S. 177–187. Springer, Berlin (2013)

    Google Scholar 

  10. Dou, S.: Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J. Solid State Electrochem. 17(4), 911–926 (2013)

    Google Scholar 

  11. Gaines, L., Sullivan, J., Burnham, A., Belharouak, I.: Life-cycle analysis for lithium-ion battery production and recycling, Argonne National Laboratory. 90th Annual Meeting of the Transportation Research Board, Washington, D.C., January 2011. http://www.transportation.anl.gov/pdfs/B/855.PDF (2011), Zugriff: November 2015

  12. Greimel, H.: Toyota targets solid-state batteries in ’20. Automotive News, 11 March 2013. http://www.autonews.com/article/20130311/OEM06/303119959/toyota-targets-solid-state-batteries-in-20 (2013), Zugriff: November 2015

  13. Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009)

    Google Scholar 

  14. Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 1–5 (2010)

    Google Scholar 

  15. Hawkins, T.R., Majeau-Bettez, G., Moa Gaussen, O., Strømman, A.H.: Life cycle assessment of NiMH and Li-ion battery Electric Vehicles. Norwegian University of Science & Technology (NTNU), LCA X, Portland, Oregon, 3 November 2010, http://www.lcacenter.org/LCAX/presentations-final/135.pdf, Zugriff: November 2015

  16. Inaba, M.: Negative electrodes: graphite. In: Encyclopedia of electrochemical power sources, Bd. 5, S. 198–208. Elsevier, Amsterdam (2009)

    Google Scholar 

  17. Inoue, H.: 6th Shenzhen International Lithium-Ion Battery Summit. Shenzhen, China (2011)

    Google Scholar 

  18. (a) Kampker, A., Hohenthanner, C.-R., Deutskens, Ch., Heimes, H.H., Sesterheim, Ch.: Fertigungsverfahren von Lithium-Ionen-Zellen und -Batterien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 18, S. 237–247. Springer, Berlin (2013) (b) Pettinger, K.-H.: Fertigungsprozesse von Lithium-Ionen-Zellen. Kap. 17, S. 221–235 (c) Pettinger, K.-H.: Prüfverfahren in der Fertigung. Kap. 20, S. 259–267

    Google Scholar 

  19. Kanevskii, L.S., Dubasova, V.S.: Degradation of lithium-ion batteries and how to fight it: A review. Russ. J. Electrochem. 41(1), 1–16 (2005)

    Google Scholar 

  20. Kawai, H., Nagata, M., Tukamoto, H., West, A.R.: High-voltage lithium cathode materials. J. Power Sources 81(21), 67–72 (1999)

    Google Scholar 

  21. Kinoshita, K., Zaghibb, K.: Negative electrodes for Li-ion batteries. J. Power Sources 110(2), 416–423 (2002)

    Google Scholar 

  22. Kraytsberg, A., Ein-Eli, Y.: Higher, stronger, better. A review of 5 Volt cathode materials for advancedl lithium-ion batteries. Adv. Energy Mater. 2(8), 922–939 (2012)

    Google Scholar 

  23. Lee, J., Urban, A., Li, X., Su, D., Hautier, G., Ceder, G.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014)

    Google Scholar 

  24. Limthongkul, P., Jang, Y.I., Dudney, N.J., Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103–1113 (2003)

    Google Scholar 

  25. Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)

    Google Scholar 

  26. Neubauer, J., Pesaran, A., Bae, C., Elder, R., Cunningham, B.: Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles. J. Power Sources 271, 614–621 (2014)

    Google Scholar 

  27. Noh, H.-J., Chen, Z., Yoon, Ch.S., Lu, J., Amine, K., Sun, Y-K.: Cathode material with nanorod structure – an application for advanced high-energy and safe lithium batteries. Chem. Mater. 25, 2109–2115 (2013)

    Google Scholar 

  28. Nyten, A., Abouimrane, A., Armand, M., Gustafsson, T., Thomas, T.: J. Electrochem. Commun. 7, 156–160 (2005)

    Google Scholar 

  29. Ohzuku, T., Takeda, S., Iwanaga, M.J.: J. Power Sources 81/82, 90–94 (1999)

    Google Scholar 

  30. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phosphoolivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    Google Scholar 

  31. PANASONIC: 3. Entwicklerforum Akkutechnologien, Aschaffenburg, 12.–15.04.2010

    Google Scholar 

  32. Patil, A., Patil, V., Shin, D.W., Choi, J.W., Paik, D.S., Yoon, S.J.: Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8), 1913–1942 (2008)

    Google Scholar 

  33. Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery aystems. The solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979)

    Google Scholar 

  34. Pillot, Ch.: Tutorial The rechargeable battery market and main trends 2011–2020. 29th International Battery Seminar & Exhibit, Ft. Lauderdale, 12 March 2012, http://www.avicenne.com/pdf/Fort_Lauderdale_Tutorial_C_Pillot_March2015.pdf, Zugriff: November 2015

  35. Pop, V., Bergveld, H.J., Notten, P.H.L., Regtien, P.P.: State-of-the-art of battery state-of-charge determination. Meas. Sci. Technol. 16(12), R93–R110 (2005)

    Google Scholar 

  36. Quartarone, E., Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011)

    Google Scholar 

  37. Ritchie, A., Howard, W.: Recent developments and likely advances in lithium-ion batteries. J. Power Sources 162(2), 809–812 (2006)

    Google Scholar 

  38. Samar, B.: Rechargeable battery (Bell Telephone Labor Inc.), US Patent 4304825 (1981), http://worldwide.espacenet.com/publicationDetails/originalDocument? CC=US&NR=4304825A&KC=A&FT=D&ND=3&date=19811208&DB=worldwide.espacenet.com&locale =de_EP, Zugriff: November 2015

  39. Santhanam, R., Rambabu, B.: Research progress in high voltage spinel LiNi\({}_{\mathrm{0.5}}\)Mn\({}_{\mathrm{1.5}}\)O\({}_{\mathrm{4}}\) material. J. Power Sources 195(17), 5442–5151 (2010)

    Google Scholar 

  40. Stevenson, K.J.: The origin, development, and future of the lithium-ion battery. J. Solid State Electrochem. 16(6), 2017–2018 (2012)

    Google Scholar 

  41. Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Google Scholar 

  42. Terranova, M.L., Orlanducci, S., Tamburri, E., Guglielmotti, V., Rossi, M.: Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 246, 167–177 (2014)

    Google Scholar 

  43. Thackeray, M., Johnson, C., Vaughey, J., Li, N., Hackney, S.: Advances in manganese-oxide composite electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005)

    Google Scholar 

  44. Tirado, J.L.: Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the-art and future prospects. Mater. Sci. Eng. Rep. 40, 103–136 (2003)

    Google Scholar 

  45. Tuck, C.D.S.: Modern Battery Technology. Ellis Horwood, Chichester (1991)

    Google Scholar 

  46. Väyrynen, A., Salminen, J.J.: Lithium ion battery production. J. Chem. Thermodyn. 46, 80–85 (2012)

    Google Scholar 

  47. Vetter, J., Novak, P., Wagner, M.R., et al.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1), 269–281 (2005)

    Google Scholar 

  48. Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976)

    Google Scholar 

  49. Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B.: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177(2), 512–527 (2008)

    Google Scholar 

  50. Xu, B., Fell, Ch.R., Chi, M., Meng, Y.S.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011)

    Google Scholar 

  51. Zhang, C., Staunton, E., Andreev, Y.G., Bruce, P.G.: Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. J. Am. Chem. Soc. 127(51), 18305–18308 (2005)

    Google Scholar 

  52. Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006)

    Google Scholar 

  53. Zhang, S.S.: A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007)

    Google Scholar 

  54. Zhang, W.-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)

    Google Scholar 

  55. Weniger, J.: Sonnenspeicher, Photovoltaik-Batteriespeicher für private Haushalte, c’t, Heft 2, 158–161 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurzweil, P. (2018). Lithiumionen-Batterien. In: Elektrochemische Speicher. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-21829-4_3

Download citation

Publish with us

Policies and ethics