A new approach for combustion modeling of large dual-fuel engines

  • Markus Krenn
  • Christoph Redtenbacher
  • Gerhard Pirker
  • Andreas Wimmer
Conference paper
Part of the Proceedings book series (PROCEE)


Until several years ago, large engines were primarily developed for single fuel operation, which has resulted in the availability of optimized gas and diesel combustion concepts. Today large engines are subject to new requirements that go beyond merely enhancing existing concepts. In a wide variety of areas of application, the focus is not only on attaining the highest efficiency with the lowest possible emissions but also on attaining the greatest possible flexibility in terms of fuel.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovich, G.N.: The Theory of Turbulent Jets. MIT Press, 1963Google Scholar
  2. Arai, M.; Tabata, M.; Hiroyasu, H.; Shimizu, M.: Disintegrating Process and Spray-Characterization of Fuel Jet Injected by a Diesel Nozzle. In: SAE Technical Paper, 1984Google Scholar
  3. Böckhoff, N.; Hanenkamp, A.: Der 51/60DF von MAN Diesel SE – Der leistungsstärkste 4-Takt Dual Fuel Motor. In: Conference Proceedings, 5th Dessau Gas Engine Conference, Dessau, 2007. S. 262-270Google Scholar
  4. Böckhoff, N.; Heider, G.; Hagl, P.: Operational experience of the 51/60DF from MAN Diesel SE. Paper No. 37, CIMAC Congress 2010, BergenGoogle Scholar
  5. Hanenkamp, A.; Böckhoff, N.: The 51/60 DF and V32/40 PGI – modern Gas engines from MAN Diesel SE. Their way from development to serial application. In: Conference Proceedings, 6th Dessau Gas Engine Conference, Dessau-Roßlau, 2009, S. 129-143.Google Scholar
  6. Hiroyasu, H.; Kadota, T.; Arai, M.: Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions. In: Bulletin of the JSME 26 (1983), Nr. 214, S. 569-575Google Scholar
  7. International Maritime Organization: Prevention of Air Pollution from Ships. 2015 Online: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx, 08.10.2015
  8. Krenn, M.; Pirker, G.; Wimmer, A.; Djuranec, S.; Meier, M.C.; Waldenmaier, U.; Zhu, J.: Methodology for Analysis and Simulation of Dual Fuel Combustion in Large Engines. In: Conference Proceedings THIESEL 2014, 2014Google Scholar
  9. Krenn, M.: Methoden für die thermodynamische Analyse und Simulation der Dual Fuel Verbrennung in Großmotoren, Technische Universität Graz, Diss., 2015Google Scholar
  10. Mehl, M.; Pitz, W.J.; Westbrook, C.K.; Curran, H.J.: Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. In: Proceedings of the Combustion Institute 33 (2011), Nr. 1, S. 193-200Google Scholar
  11. Merker, G.P. (ed.); Teichmann, R. (ed.): Grundlagen Verbrennungsmotoren. Springer Fachmedien Wiesbaden, 2014Google Scholar
  12. Mooser, D.: Brenngase und Gasmotoren. In: Mollenhauer, K.; Tschöke, H. (ed.): Handbuch Dieselmotoren, 3rd edition, Berlin Heidelberg New York, 2007Google Scholar
  13. Noske, G.: Ein quasidimensionales Modell zur Beschreibung des ottomotorischen Verbrennungsablaufes. In: VDI Fortschrittsberichte. VDI Verlag, 1988 (6-211)Google Scholar
  14. Pattas, K.; Häfner, G.: Stickoxidbildung bei der ottomotorischen Verbrennung. In: Motortechnische Zeitschrift 12 (1973), S. 397-402Google Scholar
  15. Pirker, G.; Wimmer, A.; Winter, H.; Krenn, M.: Simulationsbasierte Entwicklung von Verbrennungskonzepten für Gas und Dual Fuel Großmotoren. In: AVL Advanced Simulation Technologies Konferenz 2014, AugsburgGoogle Scholar
  16. Pischinger, R.; Klell, M.; Sams, T.: Thermodynamik der Verbrennungskraftmaschine. Springer Vienna, 2009Google Scholar
  17. Salbrechter, S.; Krenn, M.; Pirker, G.; Wimmer, A.; Nöst, M.: Engine Operating Parameter-Based Heat Transfer Simulation to Predict Engine Warm-up. In: SAE Technical Paper, 2014, (2014-01-1103)Google Scholar
  18. Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C. Jr.; Lissianski, V.V.; Qin, Z.: GRI-MECH 3.0. http://www.me.berkeley.edu/gri_mech/, 2000
  19. Stiesch, G.: Phänomenologisches Multizonen-Modell der Verbrennung und Schadstobildung im Dieselmotor, Universität Hannover, Diss., 1999Google Scholar
  20. Tabaczynski, R.; Ferguson, C.; Radhakrishnan, K.: A Turbulent Entrainment Model for Spark-Ignition Engine Combustion. In: SAE Technical Paper, 1977 (770647)Google Scholar
  21. Troberg, M.; Portin, K.; Jarvi, A: Update on Wärtsilä 4-stroke Gas Product Development. Paper No. 406, CIMAC Congress 2013, ShanghaiGoogle Scholar
  22. Walther, H.-P.; Schlatter, S.: Erstellung eines phänomenologischen Modells zur Vorausberechnung des Brennverlaufes von Gasmotoren mit Piloteinspritzung / Forschungsvereinigung Verbrennungskraftmaschinen e. V. 2012. – Research reportGoogle Scholar
  23. Watanabe, K.; Goto, S.; Hashimoto, T.: Advanced development of medium speed gas engine targeting to marine and land. Paper No. 99, CIMAC Congress 2013, ShanghaiGoogle Scholar
  24. Wärtislä Corporation: 2015 Power Plants Solutions. 2015 Available in the internet: http://wartsila.prod.avaus.fi/docs/default-source/Power-Plants-documents/pps2015-midres.pdf?sfvrsn=2, 08.10.2015
  25. Zimont, V.; Polifke, W.; Bettelini, M.; Weisenstein, W.: An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure. In: ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, 1997 (97-GT-395)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Markus Krenn
    • 1
  • Christoph Redtenbacher
    • 1
  • Gerhard Pirker
    • 1
  • Andreas Wimmer
    • 1
  1. 1.LEC GmbHGrazÖsterreich

Personalised recommendations