Skip to main content

Beyond Lip Service: Sustaining Modelling in Curricula and Coursework

  • Chapter
  • First Online:
Evaluierte Lernumgebungen zum Modellieren

Part of the book series: Realitätsbezüge im Mathematikunterricht ((REIMA))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Personal communication from Dr Ian Thomson.

References

  • ACARA (2018). Australian Curriculum/Mathematics/Aims. http://australian-curriculum.org/mathematics/aims. Accessed: 24 Jan 2018.

  • Anderson, A., Mayes, J. T., & Kibby, M. R. (1995). Small group collaborative discovery learning from hypertext. In C. O’Malley (Ed.), Computer supported collaborative learning (pp. 23–38). New York: Springer.

    Chapter  Google Scholar 

  • Blum, W., et al. (2002). ICMI study 14: applications and modelling in mathematics education – discussion document. Andersen and Heilesen, 51(1), 149–171.

    Google Scholar 

  • Burkhardt, H. (2006). Modelling in mathematics classrooms: reflections on past developments and the future. Zentralblatt für Didaktik der Mathematik, 38(2), 178–195.

    Article  Google Scholar 

  • CCSSI (2012). Mathematics: standards for mathematical practice – model with mathematics. http://www.corestandards.org/Math/Practice/MP4. Accessed 15 Nov 2014.

    Google Scholar 

  • Clatworthy, N. J., & Galbraith, P. L. (1991). Mathematical modelling in senior school mathematics: implementing an innovation. Teaching Mathematics and Applications, 10(1), 6–28.

    Article  Google Scholar 

  • Dunne, T., & Galbraith, P. (2003). Mathematical modelling as pedagogy – impact of an immersion program. In Q. Ye, W. Blum, K. S. Houston & Q. Jiang (Eds.), Mathematical modelling in education and culture (pp. 16–30). Chichester: Horwood.

    Chapter  Google Scholar 

  • Galbraith, P. (2006). Real world problems: developing principles of design. In P. Grootenboer, R. Zevenbergen & M. Chinnappan (Eds.), Identities, cultures and learning spaces. Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia, Canberra. (Vol. 1, pp. 229–236). Adelaide: MERGA.

    Google Scholar 

  • Galbraith, P. (2015). Modelling, education, and the epistemic fallacy. In G. Stillman, W. Blum & M. Salett Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 339–349). Switzerland: Springer.

    Chapter  Google Scholar 

  • Galbraith, P. L., & Clatworthy, N. J. (1990). Beyond standard models: meeting the challenge of modelling. Educational Studies in Mathematics, 21, 137–163.

    Article  Google Scholar 

  • Julie, C., & Mudaly, V. (2007). Mathematical Modelling of social issues in school mathematics in South Africa. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 503–510). New York: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. Andersen and Heilesen, 38(3), 302–310.

    Google Scholar 

  • Maaß, K., & Mischo, C. (2011). Implementing modelling into day-to-day teaching practice – the project STRATUM and its framework. Journal Mathematik-Didaktic, 32, 103–131.

    Article  Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York: Springer.

    Chapter  Google Scholar 

  • OECD (2009). Mathematics framework. In OECD PISA 2009 assessment framework: key competencies in reading, mathematics and science (Vol. 10, pp. 83–123). Paris: OECD Publishing. DOI 10.178719789264062658-4-en.

    Google Scholar 

  • Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21, 73–98.

    Article  Google Scholar 

  • Schukajlow, S., Leiss, D., Reinhard, P., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79, 215–237.

    Article  Google Scholar 

  • Schukajlow, S., Krug, A., & Rakoczy, K. (2015a). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89, 393–417.

    Article  Google Scholar 

  • Schukajlow, S., Kolter, J., & Blum, W. (2015b). Scaffolding mathematical modelling with a solution plan. ZDM. https://doi.org/10.1007/s11858-015-0707-2.

    Google Scholar 

  • Vygotsky, L. D. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. In D. C. Berliner & R. Caffee (Eds.), Handbook of educational psychology (pp. 841–873). New York: Macmillan.

    Google Scholar 

  • Zbiek, R., & Connor, A. (2006). Beyond motivation: exploring mathematical modeling as a context for deepening students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 89–112.

    Article  Google Scholar 

  • Zöttl, L., Ufer, S., & Reiss, K. (2010). Modelling with heuristic worked examples in the KOMMA learning environment. Journal Mathematik-Didaktic, 31, 143–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

Codes

Coding and decoding messages can be carried out using matrices with the aid of modular arithmetic. In modular arithmetic we say, for example, that \( 18 \equiv 4(\text{mod}\ 7) \) because the remainder is 4 when 18 is divided by 7. Modulo 26 is useful for representing the letters of the alphabet. In modulo 26 we can say, for example, \( 85 \equiv 7(\text{mod}\ 26)\). A positive remainder can be found for negative numbers. For example, \( -15 \equiv 11(\text{mod}\ 26)\) since \( 26 \times -1 +11 = -15\). The multiplicative inverse can sometimes, but not always, be found. For example, \( 9^{-1}(\text{mod}\ 26)=3\) because \( 9\times 3 (\text{mod}\ 26)\) results in the identity element, 1.

Using 2 × 2 matrices, a message can be coded as shown in this example:

Starting with the message LEAVE NOW, the message is divided into pairs of letters. Each letter is represented by a number in the range from 0 to 25 according to its position in the alphabet, where the letters A–Y are numbered 1–25 and Z is numbered 0. In this case the message becomes,

$$ 12\ 5\quad 1\ 22\quad 5\ 14\quad 15\ 23 $$

The pairs of numbers are then entered as columns in a matrix, which is then pre‐multiplied by a secret 2 × 2 matrix to produce the code.

If the secret 2 × 2 matrix is \( A=\begin{bmatrix} 3&1 \\ 5&4 \end{bmatrix}\), then the code would become:

$$ A=\begin{bmatrix} 3&1 \\ 5&4 \end{bmatrix}=\begin{bmatrix} 12& 1 & 5& 15 \\ 5 & 22 & 14 & 23 \end{bmatrix}=\begin{bmatrix} 41 & 25 & 29 & 68 \\ 80 & 93 & 81 & 167 \end{bmatrix}$$

which is \( \begin{bmatrix} 15 & 25 & 3 & 16 \\ 2 & 15 & 3 & 5 \end{bmatrix}\) mod 26 and which represents: OB YO CC PE.

If the secret 2 × 2 matrix is known, then the message can be decoded by pre‐multiplying it by A −1 where \( A^{-1}=(ad - bc)^{-1}\begin{bmatrix}d & -b \\ -c & a\end{bmatrix}(\text{mod}\ 26)\) and \( (ad - bc)^{-1}\) is the multiplicative inverse of \( (ad - bc)\) in modulo 26.

  1. a)

    Imagine you are a spy. Compose a message comprising of at least 8 letters and code the message using a suitable secret 2 × 2 matrix. Use MATLAB to perform the matrix operations and submit a print‐out of your working.

  2. b)

    Show how the coded message you created in part (a) can be decoded using the secret 2 × 2 matrix. Use MATLAB to perform the matrix operations and submit a print‐out of your working.

Now compose a message with at least 50 letters. Using a suitable 4 × 4 matrix, code the message and show how it can be decoded. Use MATLAB to perform the matrix operations and submit a print‐out of your working.

Describe one strength and one limitation of the methods you used in this investigation to create codes (included two additional tasks including an open problem).

  1. (a)

    Identify one significant assumption that was made in this investigation regarding language and describe, using examples, how you could adapt your method to allow for this assumption.

  2. (b)

    Comment briefly on the reasonableness of your results with reference to real world data.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galbraith, P. (2018). Beyond Lip Service: Sustaining Modelling in Curricula and Coursework. In: Schukajlow, S., Blum, W. (eds) Evaluierte Lernumgebungen zum Modellieren. Realitätsbezüge im Mathematikunterricht. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-20325-2_9

Download citation

Publish with us

Policies and ethics