Gesund altern pp 151-167 | Cite as

Hautalterung

Chapter

Zusammenfassung

Alle Wege führen nach Rom und genauso führen alle Wege ins Alter. Dies impliziert, dass es nicht diesen einen Weg gibt, der die Alterung bedingt, sondern dass die Alterungsprozesse multifaktoriell sind, alle Zellbestandteile betreffen und zu einem gewissen Grad auch aufeinander aufbauen, miteinander vernetzt sind und sich auch gegenseitig „aufschaukeln“ können. Ein Versuch, einen Überblick über diverse Alterungsmodelle zu gewinnen und dieselben zu kategorisieren, mündete in immerhin mehr als 300 Theorien (Medvedev, 1990), siehe auch Beitrag 6, Grundlagen der Biogerontologie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alfonso-Prieto M, Biarnes X, Vidossich P et al. (2009): The Molecular Mechanism of the Catalase Reaction. J Am Chem Soc 131, 11751–11761Google Scholar
  2. Birkedal-Hansen H, Moore WG; et al. (1993): Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4, 197–250Google Scholar
  3. Chapman SJ und Walsh A (1989): Membrane-coating granules are acidic organelles which possess proton pumps. J Invest Derm 93, 466–470Google Scholar
  4. Csiszar A, Labinskyy N, Perez V et al. (2008): Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295, H1882–1894Google Scholar
  5. Double KL, Dedov VN, Fedorow H et al. (2008): The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol Life Sci 65, 1669–1682Google Scholar
  6. Fu PP, Xia QS, Sun X et al. (2012): Phototoxicity and Environmental Transformation of Polycyclic Aromatic Hydrocarbons (PAHs)-Light-Induced Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage. J Envir Sci Health Part C- 30, 1–41Google Scholar
  7. Gray DA und Woulfe J (2005): Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowledge Environ 2005, re1Google Scholar
  8. Grayson S, Johnson-Winegar AG, Wintroub B U.et al. (1985): Lamellar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. J Invest Derm 85, 289–294Google Scholar
  9. Harman D (1956): Aging – a Theory Based on Free-Radical and Radiation-Chemistry. J Gerontol 11, 298–300Google Scholar
  10. Harman D (1972): The biologic clock: the mitochondria? J Am Geriatr Soc 20, 145–147Google Scholar
  11. Howitz KT, Bitterman KJ, Cohen HY et al. (2003): Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196Google Scholar
  12. Inui M, Ooe M, Fujii K, et al. (2008): Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo. Biofactors 32, 237–243Google Scholar
  13. Kalinin A, Marekov LN und Steinert PM (2001): Assembly of the epidermal cornified cell envelope. J Cell Sci 114, 3069–3070Google Scholar
  14. Kasai H, Chung MH, Jones DS. et al. (1991): 8-Hydroxyguanine, a DNA adduct formed by oxygen radicals: its implication on oxygen radical-involved mutagenesis/carcinogenesis. J Toxicol Sci 16 Suppl 1, 95–105Google Scholar
  15. Knott A, Achterberg V, Smuda C et al. (2015): Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors 41, 383–390Google Scholar
  16. Krutmann J und Schroeder P (2009): Role of Mitochondria in Photoaging of Human Skin: The Defective Powerhouse Model. J Invest Derm Symp Proc 14, 44–49Google Scholar
  17. Lapointe J und Hekimi S (2010): When a theory of aging ages badly. Cell Mol Life Sci 67, 1–8Google Scholar
  18. Mauro T, Bench G, Sidderas-Haddad E et al. (1998): Acute barrier perturbation abolishes the Ca2 + and K + gradients in murine epidermis: quantitative measurement using PIXE. J Invest Derm 111, 1198–1201Google Scholar
  19. Medvedev ZA (1990): An Attempt at a Rational Classification of Theories of Aging. Biol Rev 65, 375–398Google Scholar
  20. Menon GK, Elias PM, Lee SH. et al. (1992): Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 270, 503–512Google Scholar
  21. Mitchell SJ, Martin-Montalvo A, Mercken EM, et al. (2014): The SIRT1 Activator SRT1720 Extends Lifespan and Improves Health of Mice Fed a Standard Diet. Cell Rep 6, 836–843Google Scholar
  22. Ndiaye M, Philippe C, Mukhtar H et al. (2011): The grape antioxidant resveratrol for skin disorders: Promise, prospects, and challenges. Arch Biochem Biophys 508, 164–170Google Scholar
  23. Park D, Jeong H, Lee MN et al. (2016): Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 6, 21772Google Scholar
  24. Park SJ, Ahmad F, Philp A et al. (2012): Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433Google Scholar
  25. Passi S, de Pita O, Puddu P et al. (2002): Lipophilic antioxidants in human sebum and aging. Free Radical Res 36, 471–477Google Scholar
  26. Prasad A und Pospisil P (2012): Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt 17, 085004Google Scholar
  27. Rinnerthaler M, Bischof J, Streubel MK et al. (2015): Oxidative stress in aging human skin. Biomolecules 5, 545–589Google Scholar
  28. Rinnerthaler M, Buttner S, Laun P et al. (2012): Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. PNAS 109, 8658–8663Google Scholar
  29. Rinnerthaler M, Duschl J, Steinbacher P et al. (2013): Age-related changes in the composition of the cornified envelope in human skin. Exp Dermatol 22, 329–335Google Scholar
  30. Wardman P und Candeias LP (1996): Fenton chemistry: An introduction. Radiat Res 145, 523–531Google Scholar
  31. Wondrak GT, Jacobson MK und Jacobson EL (2006): Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5, 215–237Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Zellbiologie und PhysiologieUniversität SalzburgSalzburgÖsterreich

Personalised recommendations