Gesund altern pp 105-135 | Cite as

Grundlagen der Biogerontologie

  • Klaus Richter


Das Phänomen des Alterns hat seit jeher die Menschen beschäftigt. So haben sich schon im Altertum die Griechen in der Sage von Eos und Tithonos diesem Thema gewidmet: Eos, die Göttin der Morgenröte heiratete Tithonos, den Sohn des trojanischen Königs Laomedon. Vom Göttervater Zeus erbat Eos Unsterblichkeit für Tithonos, vergaß aber auch ewige Jugend zu erbitten.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham CR, Mullen PC, Tucker-Zhou T et al. (2016): Klotho Is a Neuroprotective and Cognition-Enhancing Protein. Vitam Horm 101, 215-238Google Scholar
  2. Baar MP, Brandt RMC, Putavet DA et al. (2017): Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 169, 132-147Google Scholar
  3. Baker DJ, Childs BG, Durik M et al. (2016): Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189Google Scholar
  4. Barzilai N, Crandall JP, Kritchevsky SB et al. (2016): Metformin as a Tool to Target Aging. Cell Metab 23, 1060-1065Google Scholar
  5. Bernardes De Jesus B, Vera E, Schneeberger K et al. (2012): Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4, 691-704Google Scholar
  6. Bhatia-Dey N, Kanherkar RR, Stair SE et al. (2016): Cellular Senescence as the Causal Nexus of Aging. Front Genet 7, 13Google Scholar
  7. Bhullar KS, Hubbard BP (2015): Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta 1852, 1209-1218Google Scholar
  8. Bian A, Neyra JA, Zhan M et al. (2015): Klotho, stem cells, and aging. Clin Intervent Aging 10, 1233-1243Google Scholar
  9. Boehm AM, Khalturin K, Anton-Erxleben F et al. (2012): FoxO is a critical regulator of stem cell maintenance in immortal Hydra. PNAS 109, 19697-19702Google Scholar
  10. Bouchard C, Blair SN, Katzmarzyk PT (2015): Less Sitting, More Physical Activity, or Higher Fitness? Mayo Clin Proc 90, 1533-1540Google Scholar
  11. Brack AS, Conboy MJ, Roy S et al. (2007): Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807-810Google Scholar
  12. Brown-Borg HM (2015): The somatotropic axis and longevity in mice. American journal of physiology. Endocrin Metabol 309, E503-510Google Scholar
  13. Buler M, Andersson U, Hakkola J (2016): Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J 30, 3942-3960Google Scholar
  14. Capilla-Gonzalez V, Herranz-Perez V, Garcia-Verdugo JM (2015): The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci 9, 365Google Scholar
  15. Cartee GD, Hepple RT, Bamman MM et al. (2016): Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab 23, 1034-1047Google Scholar
  16. Cavallucci V, Fidaleo M, Pani G (2016): Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion. Trends in endocrinology and metabolism: TEM 27, 756-769Google Scholar
  17. Chakkalakal JV, Jones KM, Basson MA et al. (2012): The aged niche disrupts muscle stem cell quiescence. Nature 490, 355-360Google Scholar
  18. Cheung TH, Rando TA (2013): Molecular regulation of stem cell quiescence. Nature reviews. Mol Cell Biol 14, 329-340Google Scholar
  19. Chieffi S, Messina G, Villano I et al. (2017): Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A. Front Physiol 8, 85Google Scholar
  20. Childs BG, Durik M, Baker DJ et al. (2015): Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424-1435Google Scholar
  21. Childs BG, Durik M, Baker DJ et al. (2015): Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424-1435Google Scholar
  22. Criscione SW, Teo YV, Neretti N (2016): The Chromatin Landscape of Cellular Senescence. Trends Genet 32:751-761Google Scholar
  23. Da Costa JP, Vitorino R, Silva GM et al. (2016): A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 29:90-112Google Scholar
  24. De Keizer PL (2017) The Fountain of Youth by Targeting Senescent Cells? Trends Mol Med 23, 6-17Google Scholar
  25. De Magalhaes JP (2012): Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J. 26,4821-4826Google Scholar
  26. Desdin-Mico G, Mittelbrunn M (2017): Role of exosomes in the protection of cellular homeostasis. Cell Adhes Migr 11, 127-134Google Scholar
  27. Digirolamo DJ, Kiel DP, Esser KA (2013): Bone and skeletal muscle: neighbors with close ties. J Bone Min Res 28, 1509-1518Google Scholar
  28. Dumont NA, Wang YX, Rudnicki MA (2015): Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572-1581Google Scholar
  29. Efeyan A, Comb WC, Sabatini DM (2015): Nutrient-sensing mechanisms and pathways. Nature 517:302-310Google Scholar
  30. Finch CE (2014): The menopause and aging, a comparative perspective. J Steroid Biochem Mol Biol 142, 132-141Google Scholar
  31. Finkel T (2015): The metabolic regulation of aging. Nat Med 21, 1416-1423Google Scholar
  32. Fontana L, Partridge L (2015): Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106-118Google Scholar
  33. Franceschi C, Bonafe M, Valensin S et al. (2000): Inflamm-aging - An evolutionary perspective on immunosenescence. Ann Ny Acad Sci 908, 244-254Google Scholar
  34. Franceschi C, Garagnani P, Vitale G et al. (2017): Inflammaging and ‘Garb-aging’. Trends in endocrinology and metabolism: TEM 28,199-212Google Scholar
  35. Girgis CM, Baldock PA und Downes M (2015): Vitamin D, muscle and bone: Integrating effects in development, aging and injury. Mol Cell Endocrin 410, 3-10Google Scholar
  36. Gladyshev VN (2016): Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15, 594-602Google Scholar
  37. Go YM, Chandler JD und, Jones DP (2015): The cysteine proteome. Free Rad Biol Med 84:227-245Google Scholar
  38. Goldberg EL und Dixit VD (2015): Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev 265, 63-74Google Scholar
  39. Gross O, Thomas CJ, Guarda G et al. (2011): The inflammasome: an integrated view. Immunol Rev 243, 136-151Google Scholar
  40. Harman D (1981): The Aging Process. PNAS 78, 7124-7128Google Scholar
  41. Harrison DE, Strong R, Sharp ZD et al. (2009): Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395Google Scholar
  42. Hashimoto M, Asai A, Kawagishi H et al. (2016): Elimination of p19(ARF)-expressing cells enhances pulmonary function in mice. JCI Insight 1, e87732Google Scholar
  43. Hayflick L (1965): The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37, :614-636Google Scholar
  44. Hayflick L, Moorhead PS (1961): The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621Google Scholar
  45. Hernandez SSS, Sandreschi PF, Da Silva FC et al. (2015): What are the Benefits of Exercise for Alzheimer’s Disease? A Systematic Review of the Past 10 Years. J Aging Phys Activ 23, 659-668Google Scholar
  46. Hipp MS, Park SH, Hartl FU (2014): Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24, 506-514Google Scholar
  47. Hoeijmakers JHJ (2009): DNA Damage, Aging, and Cancer. New Engl J Med 361, 1914-1914Google Scholar
  48. Hohn A, Weber D, Jung T et al. (2017): Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol 11, 482-501Google Scholar
  49. Hubbard BP, Sinclair DA (2014): Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35, 146-154Google Scholar
  50. Jones MJ, Goodman SJ, Kobor MS (2015): DNA methylation and healthy human aging. Aging Cell 14, 924-932Google Scholar
  51. Karsenty G, Olson EN (2016): Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell 164, 1248-1256Google Scholar
  52. Katsimpardi L, Litterman NK, Schein PA et al. (2014): Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors. Science 344, 630-634Google Scholar
  53. Kaushik S, Cuervo AM (2015): Proteostasis and aging. Nat Med 21,1406-1415Google Scholar
  54. Kirkwood TBL, Austad SN (2000): Why do we age? Nature 408, 233-238Google Scholar
  55. Knuppertz L, Osiewacz HD (2016): Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Age Dev 153, 30-40Google Scholar
  56. Kuro-O M, Matsumura Y, Aizawa H et al. (1997): Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45-51Google Scholar
  57. Kurosu H, Yamamoto M, Clark JD et al. (2005): Suppression of aging in mice by the hormone Klotho. Science 309,1829-1833Google Scholar
  58. Landel V, Annweiler C, Millet P et al. (2016): Vitamin D, Cognition and Alzheimer’s Disease: The Therapeutic Benefit is in the D-Tails. Journal of Alzheimer’s disease: JAD 53, 419-444Google Scholar
  59. Lepperdinger G (2013): Developmental programs are kept alive during adulthood by stem cells: the aging aspect. Exp Ger 48, 644-646Google Scholar
  60. Liesa M, Shirihai OS (2013): Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17, 491-506Google Scholar
  61. Lipsky MS, King M (2015): Biological theories of aging. Disease-a-month : DM 61, 460-466Google Scholar
  62. Lopez-Otin C, Blasco MA, Partridge L et al. (2013): The hallmarks of aging. Cell 153, 1194-1217Google Scholar
  63. Lopez-Otin C, Galluzzi L, Freije JMP et al. (2016): Metabolic Control of Longevity. Cell 166:802-821Google Scholar
  64. Madeo F, Tavernarakis N, Kroemer G (2010): Can autophagy promote longevity? Nat Cell Biol 12, 842-846Google Scholar
  65. Madeo F, Zimmermann A, Maiuri MC et al. (2015): Essential role for autophagy in life span extension. J Clin Inv 125, 85-93Google Scholar
  66. Malaquin N, Martinez A, Rodier F (2016): Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Geront 82, 39-49Google Scholar
  67. Marzetti E, Calvani R, Tosato M et al. (2017): Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res 29, 35-42Google Scholar
  68. Mccay CM, Crowell MF, Maynard LA (1935): The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10, 63-79Google Scholar
  69. Medvedev ZA (1990): An Attempt at a Rational Classification of Theories of Aging. Biol Rev 65, 375-398Google Scholar
  70. Milman S, Huffman DM, Barzilai N (2016): The Somatotropic Axis in Human Aging: Framework for the Current State of Knowledge and Future Research. Cell Metab 23, 980-989Google Scholar
  71. Minois N (2014): Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines - a mini-review. Gerontol 60, 319-326Google Scholar
  72. Mitsuhashi M, Taub DD, Kapogiannis D et al. (2013): Aging enhances release of exosomal cytokine mRNAs by A beta(1-42)-stimulated macrophages. FASEB J 27, 5141-5150Google Scholar
  73. Munoz-Espin D, Serrano M (2014): Cellular senescence: from physiology to pathology. Nature reviews. Mol Cell Biol 15, 482-496Google Scholar
  74. Neufer PD, Bamman MM, Muoio DM et al. (2015): Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits. Cell Metab 22, 4-11Google Scholar
  75. Neves J, Sousa-Victor P, Jasper H (2017): Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell 20, 161-175Google Scholar
  76. Nielsen J, Hedeholm RB, Heinemeier J et al. (2016): Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702-704Google Scholar
  77. Novelle MG, Wahl D, Dieguez C et al. (2015): Resveratrol supplementation: Where are we now and where should we go? Ageing Res Rev 21, 1-15Google Scholar
  78. Oh J, Lee YD, Wagers AJ (2014): Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20, 870-880Google Scholar
  79. Pennisi M, Crupi R, Di Paola R et al. (2016): Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 95, 1360-1372Google Scholar
  80. Pitt JM, Kroemer G, Zitvogel L (2016): Extracellular vesicles: masters of intercellular communication and potential clinical interventions. Journal of Clinical Investigation 126, 1139-1143Google Scholar
  81. Prattichizzo F, Micolucci L, Cricca M et al. (2017): Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech Ageing Dev (ahead of print: doi:  10.1016/j.mad.2017.02.008.)
  82. Pryor R, Cabreiro F (2015): Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J 471, 307-322Google Scholar
  83. Rezza A, Sennett R, Rendl M (2014): Adult Stem Cell Niches: Cellular and Molecular Components. Curr Top Dev Biol 107, 333-372Google Scholar
  84. Rodriguez KA, Edrey YH, Osmulski P et al. (2012): Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLOS one 7, e35890Google Scholar
  85. Ruetenik A, Barrientos A (2015): Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochim Biophys Acta 1847, 1434-1447Google Scholar
  86. Sanchis-Gomar F, Pareja-Galeano H, Santos-Lozano A et al. (2015): A preliminary candidate approach identifies the combination of chemerin, fetuin-A, and fibroblast growth factors 19 and 21 as a potential biomarker panel of successful aging. Age 37, 9776Google Scholar
  87. Sattler FR (2013): Growth hormone in the aging male. Best Pract Res Cl En 27, 541-555Google Scholar
  88. Scherz-Shouval R, Elazar Z (2007): ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17, 422-427Google Scholar
  89. Schimke MM, Marozin S, Lepperdinger G (2015): Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol 6, 362Google Scholar
  90. Schlogl M, Holick MF (2014): Vitamin D and neurocognitive function. Clin Intervent Aging 9, 559-568Google Scholar
  91. Schultz MB, Sinclair DA (2016): When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143, 3-14Google Scholar
  92. Sebastian D, Palacin M, Zorzano A (2017): Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging. Trends Mol Med 23, 201-215Google Scholar
  93. Sharpless NE, Sherr CJ (2015): Forging a signature of in vivo senescence. Nat Rev Cancer 15, 397-408Google Scholar
  94. Simpson SJ, Le Couteur DG, Raubenheimer D et al. (2017): Dietary protein, aging and nutritional geometry. Ageing Res Rev (ahead of print: doi:  10.1016/j.arr.2017.03.001)
  95. Soria-Valles C, Lopez-Otin C (2016): iPSCs: On the Road to Reprogramming Aging. Trends Mol Med 22, 713-724Google Scholar
  96. Soto-Gamez A, Demaria M (2017): Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 22, 786-795Google Scholar
  97. Sousa-Victor P, Garcia-Prat L, Serrano AL et al. (2015): Muscle stem cell aging: regulation and rejuvenation. Trends Endocrin Met 26, 287-296Google Scholar
  98. Takahashi K, Yamanaka S (2016): A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Bio 17, :183-193Google Scholar
  99. Tang Y, Purkayastha S, Cai D (2015): Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trend Neurosci38, 36-44Google Scholar
  100. Thorley M, Malatras A, Duddy W et al. (2015): Changes in Communication between Muscle Stem Cells and their Environment with Aging. J Neuromusc Diseases 2, 205-217Google Scholar
  101. Treaster SB, Ridgway ID, Richardson CA et al. (2014): Superior proteome stability in the longest lived animal. Age 36, 9597Google Scholar
  102. Trounson A, Dewitt ND (2016): Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17,194-200Google Scholar
  103. Vina J, Rodriguez-Manas L, Salvador-Pascual A et al. (2016): Exercise: the lifelong supplement for healthy ageing and slowing down the onset of frailty. J Physiol-London 594, 1989-1999Google Scholar
  104. Wang Y, Hekimi S (2015): Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science 350, 1204-1207Google Scholar
  105. White RR, Vijg J (2016): Do DNA Double-Strand Breaks Drive Aging? Mol Cell 63, 729-738Google Scholar
  106. Williams GC (1957): Pleiotropy, Natural-Selection, and the Evolution of Senescence. Evolution 11, 398-411Google Scholar
  107. Xia S, Zhang X, Zheng S et al. (2016): An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J Immunol Res 2016, 8426874Google Scholar
  108. Zampieri M, Ciccarone F, Calabrese R et al. (2015): Reconfiguration of DNA methylation in aging. Mech Ageing Dev 151, 60-70Google Scholar
  109. Zhou G, Myers R, Li Y et al. (2001): Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174Google Scholar
  110. Zhu Y, Tchkonia T, Pirtskhalava T et al. (2015): The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Zellbiologie und PhysiologieUniversität SalzburgSalzburgÖsterreich

Personalised recommendations