Gesund altern pp 187-202 | Cite as

Lungenschädigung durch DNA Netze bei COPD: Sind extrazelluläre DNA-Netze eine Triebkraft für chronische Entzündung und Organalterung bei der altersassoziierten Lungenkrankheit COPD?



Chronische Entzündung ist ein zentraler, die Alterung von Geweben und Organen vorantreibender Faktor. Dieser Teilvorgang des Alterungsprozesses wird als Entzündungsaltern („Inflammaging“) bezeichnet (Giunta, 2006). In diesem Zusammenhang rückt ein erst vor 12 Jahren erstmals beschriebener zellulär-biochemischer Abwehrvorgang gegen Krankheitserreger immer deutlicher ins Blickfeld des Forschungsinteresses. Bei diesem Abwehrvorgang handelt es sich um die Bildung sog. extrazellulärer Fallen („Extracellular Traps“, ETs) (Brinkmann et al., 2004).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnado A, Crofford LJ, und Oates JC (2016): At the Bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 99, 265–278Google Scholar
  2. Blanco I, Piccari L, und Barberà JA (2016): Pulmonary vasculature in COPD: The silent component. Respirol Carlton Vic 21, 984–994Google Scholar
  3. Brinkmann V, Reichard U, Goosmann C, et al. (2004): Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535Google Scholar
  4. Chargui A und El May MV (2014). Autophagy mediates neutrophil responses to bacterial infection. APMIS Acta Pathol Microbiol Immunol Scand 122, 1047–1058Google Scholar
  5. Chilosi M, Carloni A, Rossi A et al. (2013): Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl. Res. J Lab Clin Med 162, 156–173Google Scholar
  6. Dworski R, Simon H-U, Hoskins A, et al (2011): Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol 127, 1260–1266Google Scholar
  7. Fuchs TA, Abed U, Goosmann C et al. (2007): Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176, 231–241Google Scholar
  8. Giunta S. (2006): Is inflammaging an auto[innate]immunity subclinical syndrome? Immun. Ageing A 3, 12Google Scholar
  9. Goldmann O und Medina E (2012): The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol. 3, 420Google Scholar
  10. Grabcanovic-Musija F, Obermayer A, Stoiber W et al. (2015). Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res 16, 59Google Scholar
  11. Ito K, und Barnes PJ (2009): COPD as a disease of accelerated lung aging. Chest 135, 173–180Google Scholar
  12. John-Schuster G, Günter S, Hager K et al. (2015): Inflammaging increases susceptibility to cigarette smoke-induced COPD. Oncotarget 7, 30068–30083Google Scholar
  13. Kaplan MJ und Radic M (2012): Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol Baltim Md 1950 189, 2689–2695Google Scholar
  14. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A et al. (2013): NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5, 178ra40Google Scholar
  15. Lowery, EM, Brubaker, AL, Kuhlmann E et al. (2013): The aging lung. Clin Interv Aging 8, 1489–1496Google Scholar
  16. Lozano R, Naghavi M, Foreman K et al. (2012): Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380, 2095–2128Google Scholar
  17. Mangold A, Alias S, Scherz T et al. (2015): Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 116, 1182–1192Google Scholar
  18. Marcos V, Zhou-Suckow Z, Yildirim AÖ et al. (2015): Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction. Mediators Inflamm 2015, e408935Google Scholar
  19. Mitroulis I, Kambas K, Chrysanthopoulou A et al. (2011): Neutrophil Extracellular Trap Formation Is Associated with IL-1β and Autophagy-Related Signaling in Gout. PLOS ONE 6, e29318Google Scholar
  20. Mohanan S, Cherrington BD, Horibata S, et al. (2012): Potential Role of Peptidylarginine Deiminase Enzymes and Protein Citrullination in Cancer Pathogenesis. Biochemistry Research International. 2012, 895343Google Scholar
  21. Neeli I, Khan SN und Radic M (2008): Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol Baltim Md 1950 180, 1895–1902Google Scholar
  22. Obermayer A, Stoiber W, Krautgartner W-D et al. (2014): New Aspects on the Structure of Neutrophil Extracellular Traps from Chronic Obstructive Pulmonary Disease and In Vitro Generation. PLOS ONE 9, e97784Google Scholar
  23. Olsson A-K, and Cedervall J (2016): NETosis in Cancer – Platelet–Neutrophil Crosstalk Promotes Tumor-Associated Pathology. Front Immunol 7Google Scholar
  24. Pedersen F, Marwitz S, Holz O et al. (2015): Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients. Respir Med 109 1360–1362Google Scholar
  25. Pullan J, Greenwood H, Walton GM et al. (2015): Neutrophil extracellular traps (NETs) in COPD: A potential novel mechanism for host damage in acute exacerbations. Eur Respir J 46, PA5055Google Scholar
  26. Rahman I, Kinnula VL, Gorbunova V et al. (2012): SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med 54 Suppl, S20-28Google Scholar
  27. Remijsen Q, Kuijpers TW, Wirawan E et al. (2011): Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 18, 581–588Google Scholar
  28. Stoiber W, Obermayer A, Steinbacher P, et al. (2015): The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules 5, 702–723Google Scholar
  29. Sundar IK, Yao H und Rahman I. (2013): Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 18, 1956–1971Google Scholar
  30. Vestbo J, Hurd SS, Agustí AG et al. (2013): Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187, 347–365Google Scholar
  31. White PC, Chicca IJ, Cooper PR et al. (2016): Neutrophil Extracellular Traps in Periodontitis: A Web of Intrigue. J Dent Res 95, 26–34Google Scholar
  32. Wright TK, Gibson P, Simpson JL et al. (2016): Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirol Carlton Vic 21, 467–475Google Scholar
  33. Yang H, Biermann, MH, Brauner JM et al. (2016). New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol 7, 302Google Scholar
  34. Yousefi S, Mihalache C, Kozlowski E et al. (2009): Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16, 1438–1444Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.Zellbiologie und PhysiologieUniversität SalzburgSalzburgÖsterreich

Personalised recommendations